16 research outputs found
The Hunt for Missing Tornadoes: Using Satellite Imagery to Detect and Document Historical Tornado Damage in Canadian Forests
Historical tornado events from 1982 to 2020 were documented within Canada’s forested regions using high-resolution satellite imagery. Tornado forest disturbances were identified using a three-step process: 1) detecting, 2) assessing, and 3) dating each event. A grid of 120 km 3 120 km boxes was created covering Canada (excluding the extreme north). Of the 484 boxes, 367 were manually searched. Once a long, narrow region of tree damage was detected, it was first cross-referenced with known tornado databases to ensure it was a unique event. Once events were classified as either tornadic or downburst, the coordinates of the start, worst damage, and end locations were documented, as well as the direction of motion, damage indicators, degree of damage, estimated maximum wind speed, and F/EF-scale rating. In total, 231 previously unknown tornadoes were identified. In Ontario, 103 events were discovered, followed by 98 in Quebec, 9 in Manitoba, 6 in Saskatchewan, 9 in Alberta, 5 in British Columbia, and 1 in New Brunswick. The largest number of discovered tornadoes occurred in 2015, and the largest number of strong F2 tornadoes occurred in 2005. Most of the discovered tornadoes occurred in July for both F/EF1 and F/EF2 ratings. Most tornado tracks had widths between 200 and 400 m, and more than 50% of the tornadoes had a pathlength of less than 10 km. Of all the events that were discov-ered, 125 events could be fully dated, 19 were dated only by month, 41 were dated only by year, and 46 remained undated
Extreme Precipitation in the Eastern Canadian Arctic and Greenland: An Evaluation of Atmospheric Reanalyses
Extreme precipitation events are becoming more common in the Arctic as the climate warms, but characterizing these events is notoriously challenging. Atmospheric reanalyses have become popular tools for climate studies in data-sparse regions such as the Arctic. While modern reanalyses have been shown to perform reasonably well at reproducing Arctic climate, their ability to represent extreme precipitation events has not been investigated in depth. In this study, three of the most recent reanalyses, ERA-5, MERRA-2, and CFSR, are compared to surface precipitation observations in the Eastern Canadian Arctic and Greenland from 1980 to 2016 to assess how well they represent the most intense observed events. Overall, the reanalyses struggled to match observed accumulations from individual events (−0.11 ≤ r ≤ 0.47) but matched the observed seasonality of precipitation extremes. The region with the strongest match between observations and reanalyses was Southwest Greenland. Performance varies by event, and the best match between reanalyses and station observations may have a spatial/temporal offset (up to one grid cell or 1 day). The three products saw similar performance in general; however, ERA-5 tends to see slightly higher correlations and lower biases than MERRA-2 or CFSR. Considering the limitations of in situ observations, these results suggest that the reanalyses are capable of representing aggregate extreme precipitation (e.g., seasonal or annual time scales), but struggle to consistently match the timing and location of specific observed events
The 2015 Plains Elevated Convection at Night Field Project
The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings
Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study
Numerous studies on climate change and variability have revealed that these phenomena have noticeable influence on the epidemiology of dengue fever, and such relationships are complex due to the role of the vector—the Aedes mosquitoes. By undertaking a step-by-step approach, the present study examined the effects of climatic factors on vector abundance and subsequent effects on dengue cases of Dhaka city, Bangladesh. Here, we first analyzed the time-series of Stegomyia indices for Aedes mosquitoes in relation to temperature, rainfall and relative humidity for 2002–2013, and then in relation to reported dengue cases in Dhaka. These data were analyzed at three sequential stages using the generalized linear model (GLM) and generalized additive model (GAM). Results revealed strong evidence that an increase in Aedes abundance is associated with the rise in temperature, relative humidity, and rainfall during the monsoon months, that turns into subsequent increases in dengue incidence. Further we found that (i) the mean rainfall and the lag mean rainfall were significantly related to Container Index, and (ii) the Breteau Index was significantly related to the mean relative humidity and mean rainfall. The relationships of dengue cases with Stegomyia indices and with the mean relative humidity, and the lag mean rainfall were highly significant. In examining longitudinal (2001–2013) data, we found significant evidence of time lag between mean rainfall and dengue cases
Projecting into the Future: the Canadian Arctic Environment, Tomorrow to 2100
Published as part of ArcticNet (2012).
The article of record may be found at http://www.arcticnet.ulaval.ca/pdf/research/compendium2.pdf
Nocturnal convective initiation during PECAN 2015
Nocturnal convection initiation (NCI) is more difficult to anticipate and forecast than daytime convection initiation (CI). A major component of the Plains Elevated Convection at Night (PECAN) field campaign in the U.S. Great Plains was to intensively sample NCI and its near environment. In this article, we summarize NCI types observed during PECAN: 1 June–16 July 2015. These NCI types, classified using PECAN radar composites, are associated with 1) frontal overrunning, 2) the low-level jet (LLJ), 3) a preexisting mesoscale convective system (MCS), 4) a bore or density current, and 5) a nocturnal atmosphere lacking a clearly observed forcing mechanism (pristine). An example and description of each of these different types of PECAN NCI events are presented. The University of Oklahoma real-time 4-km Weather Research and Forecasting (WRF) Model ensemble forecast runs illustrate that the above categories having larger-scale organization (e.g., NCI associated with frontal overrunning and NCI near a preexisting MCS) were better forecasted than pristine. Based on current knowledge and data from PECAN, conceptual models summarizing key environmental features are presented and physical processes underlying the development of each of these different types of NCI events are discussed.This article is published as Weckwerth, Tammy M., John Hanesiak, James W. Wilson, Stanley B. Trier, Samuel K. Degelia, William A. Gallus Jr, Rita D. Roberts, and Xuguang Wang. "Nocturnal convection initiation during PECAN 2015." Bulletin of the American Meteorological Society 100, no. 11 (2019): 2223-2239. DOI: 10.1175/BAMS-D-18-0299.1. </p