70 research outputs found

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    Modelling of epithelial growth, fission and lumen formation during embryonic thyroid development : a combination of computational and experimental approaches

    Get PDF
    Organogenesis is the phase of embryonic development leading to the formation of fully functional organs. In the case of the thyroid, organogenesis starts from the endoderm and generates a multitude of closely packed independent spherical follicular units surrounded by a dense network of capillaries. Follicular organisation is unique and essential for thyroid function, i.e. thyroid hormone production. Previous in vivo studies showed that, besides their nutritive function, endothelial cells play a central role during thyroid gland morphogenesis. However, the precise mechanisms and biological parameters controlling the transformation of the multi-layered thyroid epithelial primordium into a multitude of single-layered follicles are mostly unknown. Animal studies used to improve understanding of organogenesis are costly and time-consuming, with recognised limitations. Here, we developed and used a 2-D vertex model of thyroid growth, angiogenesis and folliculogenesis, within the open-source Chaste framework. Our in silico model, based on in vivo images, correctly simulates the differential growth and proliferation of central and peripheral epithelial cells, as well as the morphogen-driven migration of endothelial cells, consistently with our experimental data. Our simulations further showed that reduced epithelial cell adhesion was critical to allow endothelial invasion and fission of the multi-layered epithelial mass. Finally, our model also allowed epithelial cell polarisation and follicular lumen formation by endothelial cell abundance and proximity. Our study illustrates how constant discussion between theoretical and experimental approaches can help us to better understand the roles of cellular movement, adhesion and polarisation during thyroid embryonic development. We anticipate that the use of in silico models like the one we describe can push forward the fields of developmental biology and regenerative medicine

    A comparison of three finite elements to solve the linear shallow water equations

    No full text
    The purpose of the present study is to select a convenient mixed finite element formulation for ocean modelling. The finite element equivalents of Arakawa's A-, B- and C-grids are investigated by using the linear shallow water equations. Numerical and analytical techniques are used to study the types of computational noise present in each element. It is shown that the P1P1 and the P1P0 element (the equivalents of the A- and B-grids respectively) allow the presence of spurious computational modes in the elevation field. For the P1P1 element, these modes can be filtered out by adding a stabilizing term to the continuity equation. This method, although consistent, can lead to dissipative unphysical effects at the discrete level. The P1?P0 element or low order Raviart–Thomas element (corresponding to the C-grid) is free of elevation noise and represents well inertia-gravity waves when the deformation radius is resolved but presents computational velocity modes. These modes are however filtered out in a more complex model in which the momentum diffusion term is not neglected
    • …
    corecore