385 research outputs found

    Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    Get PDF
    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Partnership of PGC-1α and HNF4α in the regulation of lipoprotein metabolism

    Get PDF
    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a transcriptional coactivator involved in several aspects of energy metabolism. It is induced or activated under different stimuli in a highly tissue-specific manner and subsequently partners with certain transcription factors in those tissues to execute various biological programs. In the fasted liver, PGC-1α is induced and interacts with hepatocyte nuclear factor 4α (HNF4α) and other transcription factors to activate gluconeogenesis and increase hepatic glucose output. Given the broad spectrum of liver genes responsive to HNF4α, we sought to determine those that were specifically targeted by the combination of PGC-1α and HNF4α. Coexpression of these two molecules in murine stem cells reveals a high induction of mRNA for apolipoproteins A-IV and C-II. Forced expression of PGC-1α in mouse and human hepatoma cells increases the mRNA of a subset of apolipoproteins implicated in very low density lipoprotein and triglyceride metabolism, including apolipoproteins A-IV, C-II, and C-III. Coactivation of the apoC-III/A-IV promoter region by PGC-1α occurs through a highly conserved HNF4α response element, the loss of which completely abolishes activation by PGC-1α and HNF4α. Adenoviral infusion of PGC-1α into live mice increases hepatic expression of apolipoproteins A-IV, C-II, and C-III and increases serum and very low density lipoprotein triglyceride levels. Conversely, knock down of PGC-1α in vivo causes a decrease in both apolipoprotein expression and serum triglyceride levels. These data point to a crucial role for the PGC-1α/HNF4α partnership in hepatic lipoprotein metabolism

    Skeletal Muscle PGC-1α Is Required for Maintaining an Acute LPS-Induced TNFα Response

    Get PDF
    Many lifestyle-related diseases are associated with low-grade inflammation and peroxisome proliferator activated receptor γ coactivator (PGC)-1α has been suggested to be protective against low-grade inflammation. However, whether these anti-inflammatory properties affect acute inflammation is not known. The aim of the present study was therefore to investigate the role of muscle PGC-1α in acute inflammation. Quadriceps muscles were removed from 10-week old whole body PGC-1α knockout (KO), muscle specific PGC-1α KO (MKO) and muscle-specific PGC-1α overexpression mice (TG), 2 hours after an intraperitoneal injection of either 0.8 µg LPS/g body weight or saline. Basal TNFα mRNA content was lower in skeletal muscle of whole body PGC-1α KO mice and in accordance TG mice showed increased TNFα mRNA and protein level relative to WT, indicating a possible PGC-1α mediated regulation of TNFα. Basal p65 phosphorylation was increased in TG mice possibly explaining the elevated TNFα expression in these mice. Systemically, TG mice had reduced basal plasma TNFα levels compared with WT suggesting a protective effect against systemic low-grade inflammation in these animals. While TG mice reached similar TNFα levels as WT and showed more marked induction in plasma TNFα than WT after LPS injection, MKO PGC-1α mice had a reduced plasma TNFα and skeletal muscle TNFα mRNA response to LPS. In conclusion, the present findings suggest that PGC-1α enhances basal TNFα expression in skeletal muscle and indicate that PGC-1α does not exert anti-inflammatory effects during acute inflammation. Lack of skeletal muscle PGC-1α seems however to impair the acute TNFα response, which may reflect a phenotype more susceptible to infections as also observed in type 2 diabetes patients

    Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells

    Get PDF
    The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. © 2013 Zhang et al

    A comparison of the physical and chemical differences between cancellous and cortical bovine bone mineral at two ages

    Get PDF
    To assess possible differences between the mineral phases of cortical and cancellous bone, the structure and composition of isolated bovine mineral crystals from young (1–3 months) and old (4–5 years) postnatal bovine animals were analyzed by a variety of complementary techniques: chemical analyses, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 31P solid-state magic angle spinning nuclear magnetic resonance spectroscopy (NMR). This combination of methods represents the most complete physicochemical characterization of cancellous and cortical bone mineral completed thus far. Spectra obtained from XRD, FTIR, and 31P NMR all confirmed that the mineral was calcium phosphate in the form of carbonated apatite; however, a crystal maturation process was evident between the young and old and between cancellous and cortical mineral crystals. Two-way analyses of variance showed larger increases of crystal size and Ca/P ratio for the cortical vs. cancellous bone of 1–3 month than the 4–5 year animals. The Ca/(P + CO3) remained nearly constant within a given bone type and in both bone types at 4–5 years. The carbonate and phosphate FTIR band ratios revealed a decrease of labile ions with age and in cortical, relative to cancellous, bone. Overall, the same aging or maturation trends were observed for young vs. old and cancellous vs. cortical. Based on the larger proportion of newly formed bone in cancellous bone relative to cortical bone, the major differences between the cancellous and cortical mineral crystals must be ascribed to differences in average age of the crystals

    Functional Characterization of a First Avian Cytochrome P450 of the CYP2D Subfamily (CYP2D49)

    Get PDF
    The CYP2D family members are instrumental in the metabolism of 20–25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49) was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%–57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1′-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4′-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required

    Fiber Type Conversion by PGC-1α Activates Lysosomal and Autophagosomal Biogenesis in Both Unaffected and Pompe Skeletal Muscle

    Get PDF
    PGC-1α is a transcriptional co-activator that plays a central role in the regulation of energy metabolism. Our interest in this protein was driven by its ability to promote muscle remodeling. Conversion from fast glycolytic to slow oxidative fibers seemed a promising therapeutic approach in Pompe disease, a severe myopathy caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) which is responsible for the degradation of glycogen. The recently approved enzyme replacement therapy (ERT) has only a partial effect in skeletal muscle. In our Pompe mouse model (KO), the poor muscle response is seen in fast but not in slow muscle and is associated with massive accumulation of autophagic debris and ineffective autophagy. In an attempt to turn the therapy-resistant fibers into fibers amenable to therapy, we made transgenic KO mice expressing PGC-1α in muscle (tgKO). The successful switch from fast to slow fibers prevented the formation of autophagic buildup in the converted fibers, but PGC-1α failed to improve the clearance of glycogen by ERT. This outcome is likely explained by an unexpected dramatic increase in muscle glycogen load to levels much closer to those observed in patients, in particular infants, with the disease. We have also found a remarkable rise in the number of lysosomes and autophagosomes in the tgKO compared to the KO. These data point to the role of PGC-1α in muscle glucose metabolism and its possible role as a master regulator for organelle biogenesis - not only for mitochondria but also for lysosomes and autophagosomes. These findings may have implications for therapy of lysosomal diseases and other disorders with altered autophagy
    • …
    corecore