19 research outputs found

    Structural genomics target selection for the New York consortium on membrane protein structure

    Get PDF
    The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space

    Insulin Resistance Exacerbates Genetic Predisposition to Nonalcoholic Fatty Liver Disease in Individuals Without Diabetes.

    No full text
    The accumulation of excess fat in the liver (hepatic steatosis) in the absence of heavy alcohol consumption causes nonalcoholic fatty liver disease (NAFLD), which has become a global epidemic. Identifying metabolic risk factors that interact with the genetic risk of NAFLD is important for reducing disease burden. We tested whether serum glucose, insulin, insulin resistance, triglyceride (TG), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index (BMI), and waist-to-hip ratio adjusted for BMI interact with genetic variants in or near the patatin-like phospholipase domain containing 3 (PNPLA3) gene, the glucokinase regulatory protein (GCKR) gene, the neurocan/transmembrane 6 superfamily member 2 (NCAN/TM6SF2) gene, and the lysophospholipase-like 1 (LYPLAL1) gene to exacerbate hepatic steatosis, estimated by liver attenuation. We performed association analyses in 10 population-based cohorts separately and then meta-analyzed results in up to 14,751 individuals (11,870 of European ancestry and 2,881 of African ancestry). We found that PNPLA3-rs738409 significantly interacted with insulin, insulin resistance, BMI, glucose, and TG to increase hepatic steatosis in nondiabetic individuals carrying the G allele. Additionally, GCKR-rs780094 significantly interacted with insulin, insulin resistance, and TG. Conditional analyses using the two largest European ancestry cohorts in the study showed that insulin levels accounted for most of the interaction of PNPLA3-rs738409 with BMI, glucose, and TG in nondiabetic individuals. Insulin, PNPLA3-rs738409, and their interaction accounted for at least 8% of the variance in hepatic steatosis in these two cohorts. Conclusion: Insulin resistance, either directly or through the resultant elevated insulin levels, more than other metabolic traits, appears to amplify the PNPLA3-rs738409-G genetic risk for hepatic steatosis. Improving insulin resistance in nondiabetic individuals carrying PNPLA3-rs738409-G may preferentially decrease hepatic steatosis
    corecore