1,274 research outputs found

    The complexities of antibiotic action

    Get PDF

    Reassessing the Host Defense Peptide Landscape

    Get PDF
    Current research has demonstrated that small cationic amphipathic peptides have strong potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, and anti-inflammatories. Although traditionally termed antimicrobial peptides (AMPs) these additional roles have prompted a shift in terminology to use the broader term host defense peptides (HDPs) to capture the multi-functional nature of these molecules. In this review, we critically examined the role of AMPs and HDPs in infectious diseases and inflammation. It is generally accepted that HDPs are multi-faceted mediators of a wide range of biological processes, with individual activities dependent on their polypeptide sequence. In this context, we explore the concept of chemical space as it applies to HDPs and hypothesize that the various functions and activities of this class of molecule exist on independent but overlapping activity landscapes. Finally, we outline several emerging functions and roles of HDPs and highlight how an improved understanding of these processes can potentially be leveraged to more fully realize the therapeutic promise of HDPs

    Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival

    Get PDF
    Protozoan parasites are the causative agent of much disease in tropical areas of the world. Currently, the control of these diseases is dependent on outdated drug treatment, with associated high toxicity and drug resistance. There is an urgent need for novel anti-parasitic therapies. One emerging anti-parasitic therapies is Host defence peptides (HDPs). Here we test the HDP BMAP-28 as an anti-leishmanial therapy against two lifecycle stages of Leishmania major, the promastigotes (insect infective form) and the intracellular amastigote (mammalian infective form). Two stereoisomers of BMAP-28, the D-amino acid form (D-BMAP-28) and the retro-inverso form (RI-BMAP-28), were also tested for anti-leishmanial activity. The BMAP-28 form (L-form) was susceptible to degradation by GP63, the metalloproteinase that covers the promastigotes cell surface. However, the BMAP-28 isomers, the D-form and RI-form were resistant, and therefore more potent against the promastigote parasite. Though other anti-leishmanial HDP studies focus on the promastigote form of the parasite, it is the mammalian infective form, the amastigote, which causes the disease symptoms. Here we demonstrate that BMAP-28 and its isomers D-BMAP-28 and RI-BMAP-28 are effective against the amastigote form of the parasite using a macrophage infection model. These findings show that BMAP-28 has excellent potential as a novel anti-leishmanial therapeutic

    Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot

    Get PDF
    Abstract Potato is the world's largest non-cereal crop. Potato late blight is a pandemic, foliar wasting potato disease caused by Phytophthora infestans, which has become highly virulent, fungicide resistant, and widely disseminated. Similarly, fungicide resistant isolates of Phytophthora erythroseptica, which causes pink rot, have also become an economic scourge of potato tubers. Thus, an alternate, cost effective strategy for disease control has become an international imperative. Here we describe a strategy for engineering potato plants exhibiting strong protection against these exceptionally virulent pathogens without deleterious effects on plant yield or vigor. The small, naturally occurring antimicrobial cationic peptide, temporin A, was N-terminally modified (MsrA3) and expressed in potato plants. MsrA3 conveyed strong resistance to late blight and pink rot phytopathogens in addition to the bacterial pathogen Erwinia carotovora. Transgenic tubers remained disease-free during storage for more than 2 years. These results provide a timely, sustainable, effective, and environmentally friendly means of control of potato diseases while simultaneously preventing storage losses

    Targeting the Pseudomonas aeruginosa Virulence Factor Phospholipase C With Engineered Liposomes.

    Get PDF
    Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen Pseudomonas aeruginosa. We used the highly virulent cystic fibrosis P. aeruginosa Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the Pseudomonas secretome. Mass spectrometry of liposome-sequestered Pseudomonas proteins identified the virulence-promoting hemolytic phospholipase C (PlcH) as having been neutralized. Pseudomonas aeruginosa supernatants incubated with liposomes demonstrated reduced PlcH activity as assessed by the p-nitrophenylphosphorylcholine (NPPC) assay. Testing the in vivo efficacy of the liposomes in a murine cutaneous abscess model revealed that Sm and Ch:Sm, as single dose treatments, attenuated abscesses by >30%, demonstrating a similar effect to that of a mutant lacking plcH in this infection model. Thus, sphingomyelin-containing liposome therapy offers an interesting approach to treat and reduce virulence of complex infections caused by P. aeruginosa and potentially other Gram-negative pathogens expressing PlcH

    Probing Unstable Massive Neutrinos with Current Cosmic Microwave Background Observations

    Get PDF
    The pattern of anisotropies in the Cosmic Microwave Background depends upon the masses and lifetimes of the three neutrino species. A neutrino species of mass greater than 10 eV with lifetime between 10^{13} sec and 10^{17} sec leaves a very distinct signature (due to the integrated Sachs-Wolfe effect): the anisotropies at large angles are predicted to be comparable to those on degree scales. Present data exclude such a possibility and hence this region of parameter space. For mν30m_\nu \simeq 30 eV, τ1013\tau \simeq 10^{13} sec, we find an interesting possibility: the Integrated Sachs Wolfe peak produced by the decaying neutrino in low-Ω\Omega models mimics the acoustic peak expected in an Ω=1\Omega = 1 model.Comment: 5 pages, 4 figure

    Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa

    Get PDF
    Besides being a major opportunistic human pathogen, Pseudomonas aeruginosa can be found in a wide range of environments. This versatility is linked to complex regulation, which is achieved through the action of transcriptional regulators, and post-transcriptional regulation by intracellular proteases including Lon. Indeed, lon mutants in this species show defects in motility, biofilm formation, pathogenicity and fluoroquinolone resistance. Here, the proteomic approach stable isotope labeling by amino acids in cell culture (SILAC) was used to search for novel proteolytic targets. One of the proteins that accumulated in the lon mutant was the RNA-binding protein Hfq. Further experiments demonstrated the ability of Lon to degrade Hfq in vitro. Also, overexpression of the hfq gene in the wild-type strain led to partial inhibition of swarming, swimming and twitching motilities, indicating that Hfq accumulation could contribute to the phenotypes displayed by Lon mutants. Hfq overexpression also led to the upregulation of the small regulatory RNA PhrS. Analysis of the phenotypes of strains lacking or overexpressing this sRNA indicated that the Lon protease might be indirectly regulating the levels and activity of sRNAs via Hfq. Overall, this study revealed new links in the complex regulatory chain that controls multicellular behaviours in P. aeruginosa.The work described in this paper was funded by grants from CIHR and Cystic Fibrosis Canada (CFC). E.B.M.B. was supported by a scholarship from CFC. C.d.l.F.-N. holds scholarships from the Fundación “la Caixa” and Fundación Canadá, and from Fundación Ramón Areces (Spain). R.E.W.H. holds a Canada Research Chair in Health and Genomics.Peer Reviewe

    Multidrug Efflux Systems Play an Important Role in the Invasiveness of Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an important opportunistic human pathogen. Certain strains can transmigrate across epithelial cells, and their invasive phenotype is correlated with capacity to cause invasive human disease and fatal septicemia in mice. Four multidrug efflux systems have been described in P. aeruginosa, however, their contribution to virulence is unclear. To clarify the role of efflux systems in invasiveness, P. aeruginosa PAO1 wild-type (WT) and its efflux mutants were evaluated in a Madin-Darby canine kidney (MDCK) epithelial cell monolayer system and in a murine model of endogenous septicemia. All efflux mutants except a ΔmexCD-oprJ deletion demonstrated significantly reduced invasiveness compared with WT. In particular, a ΔmexAB-oprM deletion strain was compromised in its capacity to invade or transmigrate across MDCK cells, and could not kill mice, in contrast to WT which was highly invasive (P < 0.0006) and caused fatal infection (P < 0.0001). The other mutants, including ΔmexB and ΔmexXY mutants, were intermediate between WT and the ΔmexAB-oprM mutant in invasiveness and murine virulence. Invasiveness was restored to the ΔmexAB-oprM mutant by complementation with mexAB-oprM or by addition of culture supernatant from MDCK cells infected with WT. We conclude that the P. aeruginosa MexAB-OprM efflux system exports virulence determinants that contribute to bacterial virulence

    Interconnection of post-transcriptional regulation: The RNA-binding protein Hfq is a novel target of the Lon protease in Pseudomonas aeruginosa

    Get PDF
    Besides being a major opportunistic human pathogen, Pseudomonas aeruginosa can be found in a wide range of environments. This versatility is linked to complex regulation, which is achieved through the action of transcriptional regulators, and post-transcriptional regulation by intracellular proteases including Lon. Indeed, lon mutants in this species show defects in motility, biofilm formation, pathogenicity and fluoroquinolone resistance. Here, the proteomic approach stable isotope labeling by amino acids in cell culture (SILAC) was used to search for novel proteolytic targets. One of the proteins that accumulated in the lon mutant was the RNA-binding protein Hfq. Further experiments demonstrated the ability of Lon to degrade Hfq in vitro. Also, overexpression of the hfq gene in the wild-type strain led to partial inhibition of swarming, swimming and twitching motilities, indicating that Hfq accumulation could contribute to the phenotypes displayed by Lon mutants. Hfq overexpression also led to the upregulation of the small regulatory RNA PhrS. Analysis of the phenotypes of strains lacking or overexpressing this sRNA indicated that the Lon protease might be indirectly regulating the levels and activity of sRNAs via Hfq. Overall, this study revealed new links in the complex regulatory chain that controls multicellular behaviours in P. aeruginosa.Fundación Obra Social de La CaixaFundación CanadáFundación Ramón Arece

    Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment

    Get PDF
    We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment.Fundación Obra Social de La CaixaFundación CanadáFundación Ramón Areces (Postdoctoral Scholarship
    corecore