5 research outputs found

    Directly Measured Denitrification Reveals Oyster Aquaculture and Restored Oyster Reefs Remove Nitrogen at Comparable High Rates

    Get PDF
    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. The degree to which these management activities perform similar functions for removing N, however, has not been extensively examined in New England, a place where nutrient runoff is high and increasing oyster (Crassostrea virginica) restoration and aquaculture activity is taking place. Here, we use a novel in situ methodology to directly measure net N2 and O2 fluxes across the sediment-water interface in a shallow (~1 m) coastal pond in southern Rhode Island. We collected data seasonally during 2013 and 2014 at restored oyster reefs, oyster aquaculture, oyster cultch (shell), and bare sediment. Restored oyster reefs and aquaculture had the highest mean (±SE) denitrification rates, 581.9 (±164.2) and 346 (±168.6) μmol N2−N m−2 h−1, respectively, and are among the highest recorded for oyster-dominated environments. Denitrification rates at sites with oyster cultch were 60.9 (±44.3) μmol N2−N m−2 h−1, which is substantially less than the sites with active oysters but still more than 50% higher than denitrification rates measured in bare sediment (24.4 ± 10.1 μmol N2–N m−2 h−1). The increase in denitrification rates at treatments, however, varied by season and the greatest rates for restored reefs were in the fall. Overall, the greatest aggregate denitrification rates occurred in the fall. Sediment oxygen demand (SOD) followed similar patterns but with greater overall rates in the summer, and displayed a strong linear relationship with denitrification (R2 = 0.93). Our results demonstrate that habitats associated with live oysters have higher net denitrification rates and that oyster reef restoration and oyster aquaculture may provide similar benefits to the ecosystem in terms of N removal. However, gas fluxes may also be affected where three-dimensional structure is introduced via oyster shell cultch and this appears to be seasonally-dependent. These data will be important for managers as they incorporate oysters into nutrient reduction strategies and consider system-level trade-offs in services provided by oyster reef restoration and aquaculture activities

    Directly Measured Denitrification Reveals Oyster Aquaculture and Restored Oyster Reefs Remove Nitrogen at Comparable High Rates

    Get PDF
    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. The degree to which these management activities perform similar functions for removing N, however, has not been extensively examined in New England, a place where nutrient runoff is high and increasing oyster (Crassostrea virginica) restoration and aquaculture activity is taking place. Here, we use a novel in situ methodology to directly measure net N2 and O2 fluxes across the sediment-water interface in a shallow (~1 m) coastal pond in southern Rhode Island. We collected data seasonally during 2013 and 2014 at restored oyster reefs, oyster aquaculture, oyster cultch (shell), and bare sediment. Restored oyster reefs and aquaculture had the highest mean (±SE) denitrification rates, 581.9 (±164.2) and 346 (±168.6) μmol N2−N m−2 h−1, respectively, and are among the highest recorded for oyster-dominated environments. Denitrification rates at sites with oyster cultch were 60.9 (±44.3) μmol N2−N m−2 h−1, which is substantially less than the sites with active oysters but still more than 50% higher than denitrification rates measured in bare sediment (24.4 ± 10.1 μmol N2–N m−2 h−1). The increase in denitrification rates at treatments, however, varied by season and the greatest rates for restored reefs were in the fall. Overall, the greatest aggregate denitrification rates occurred in the fall. Sediment oxygen demand (SOD) followed similar patterns but with greater overall rates in the summer, and displayed a strong linear relationship with denitrification (R2 = 0.93). Our results demonstrate that habitats associated with live oysters have higher net denitrification rates and that oyster reef restoration and oyster aquaculture may provide similar benefits to the ecosystem in terms of N removal. However, gas fluxes may also be affected where three-dimensional structure is introduced via oyster shell cultch and this appears to be seasonally-dependent. These data will be important for managers as they incorporate oysters into nutrient reduction strategies and consider system-level trade-offs in services provided by oyster reef restoration and aquaculture activities

    Restoration potential of Asian oysters on heavily developed coastlines

    No full text
    Reef-building oysters historically provided the main structural and ecological component of temperate and subtropical coastal waters globally. While the loss of oyster reefs is documented in most regions globally, assessments of the status of Asian oyster reefs are limited. The feasibility of restoration within the regional biological and societal contexts needs to be assessed before implementation. Here, we quantified the current distribution of natural oyster reefs (Crassostrea spp.) in the shallow coastal waters of Hong Kong, assessed the biological feasibility of reestablishing reefs using natural recruitment, and examined their current and potential water filtration capacity as a key ecosystem service provided by restoration. We found natural low-relief oyster beds in the low intertidal coastal areas at a subset of the locations surveyed. These areas are, however, degraded and have sparse densities of oysters generally 500,000 indiv./m2) and while survival to maturity varied across sites there was adequate larval supply and survival for restoration. Filtration rates for a 1-year-old recruit (90 mm length, approximately 30 L/hour per individual) at summer temperatures (30°C) meant that even the small remnant populations are able to provide some filtration services (up to 31.7 ML/hour). High natural recruitment means that oyster reef restoration can be achieved with the addition of hard substrate for recruitment, increased protection of restoration sites, and would not only increase the ecological value of reefs regionally but also serve as a model for future restoration in Asia

    Habitat Modification and Coastal Protection by Ecosystem-Engineering Reef-Building Bivalves

    No full text
    Reef-building bivalves like oysters and mussels are conspicuous ecosystemengineers in intertidal and subtidal coastal environments. By forming complex,three-dimensional structures on top of the sediment surface, epibenthic bivalvereefs exert strong bio-physical interactions, thereby influencing local hydro- and morphodynamics as well as surrounding habitats and associated species. The spatial impact of the ecosystem engineering effects of reef-building bivalves is much larger than the size of the reef. By influencing hydrodynamics oysters and mussels modify the sedimentary environment far beyond the boundaries of the reef, affecting morphological and ecological processes up to several hundreds of meters. Being key-stone species in many coastal environments, reef-building bivalves are increasingly recognized for their role in delivering important ecosystem services that serve human wellbeing. Here we focus on two services, namely the regulating service coastal protection (coastal erosion prevention, shoreline stabilization) and the supporting habitat for species service (enhancement of biodiversity and diversification of the landscape). Due to their wave dampening effects, reef-building bivalve reefs are increasingly used for shoreline protection and erosion control along eroding coastlines, as an alternative to artificial shoreline hardening. Thefacilitative interactions at long-distances of bivalve reefs provide biodiversity benefits and more specifically facilitate or protect other valuable habitats such as intertidal flats, sea grasses, saltmarshes and mangroves. Two case studies are used to demonstrate how bivalve reefs can be restored or constructed for shoreline protection and erosion control, thereby focusing on oyster reefs: (1) Oyster reefs for shoreline protection in coastal Alabama, USA, and (2) Oyster reefs as protection against tidal flat erosion, Oosterschelde, The Netherlands. It is argued that bivalve reefs should be promoted as nature-based solutions that provide biodiversity benefits and coastal protection and help in climate change mitigation and adaptation. In order to successfully restore these habitats practitioners should consider a general framework in which habitat requirements, environmental setting and long-distance interdependence between habitats are mutually considered

    Yeast Biodiversity and Biotechnology

    No full text
    corecore