37 research outputs found
A comparison of sunlight exposure in men with prostate cancer and basal cell carcinoma
Ultraviolet radiation exposure increases basal cell carcinoma (BCC) risk, but may be protective against prostate cancer. We attempted to identify exposure patterns that confer reduced prostate cancer risk without increasing that of BCC. We used a questionnaire to assess exposure in 528 prostate cancer patients and 442 men with basal cell carcinoma, using 365 benign prostatic hypertrophy patients as controls. Skin type 1 (odds ratio (OR)=0.47, 95% CI=0.26–0.86), childhood sunburning (OR=0.38, 95% CI=0.26–0.57), occasional/frequent sunbathing (OR=0.21, 95% CI=0.14–0.31), lifetime weekday (OR=0.85, 95% CI=0.80–0.91) and weekend exposure (OR=0.79, 95% CI=0.73–0.86) were associated with reduced prostate cancer risk. Skin type 1 (OR=4.00, 95% CI=2.16–7.41), childhood sunburning (OR=1.91, 95% CI=1.36–2.68), regular foreign holidays (OR=6.91, 95% CI=5.00-9.55) and weekend (OR=1.17, 95% CI=1.08–1.27) but not weekday exposure were linked with increased BCC risk. Combinations of one or two parameters were associated with a progressive decrease in the ORs for prostate cancer risk (OR=0.54–0.25) with correspondingly increased BCC risk (OR=1.60–2.54). Our data do not define exposure patterns that reduce prostate cancer risk without increasing BCC risk
A Prospective Study of Plasma Vitamin D Metabolites, Vitamin D Receptor Polymorphisms, and Prostate Cancer
BACKGROUND: Vitamin D insufficiency is a common public health problem nationwide. Circulating 25-hydroxyvitamin D(3) (25[OH]D), the most commonly used index of vitamin D status, is converted to the active hormone 1,25 dihydroxyvitamin D(3) (1,25[OH](2)D), which, operating through the vitamin D receptor (VDR), inhibits in vitro cell proliferation, induces differentiation and apoptosis, and may protect against prostate cancer. Despite intriguing results from laboratory studies, previous epidemiological studies showed inconsistent associations of circulating levels of 25(OH)D, 1,25(OH)(2)D, and several VDR polymorphisms with prostate cancer risk. Few studies have explored the joint association of circulating vitamin D levels with VDR polymorphisms. METHODS AND FINDINGS: During 18 y of follow-up of 14,916 men initially free of diagnosed cancer, we identified 1,066 men with incident prostate cancer (including 496 with aggressive disease, defined as stage C or D, Gleason 7–10, metastatic, and fatal prostate cancer) and 1,618 cancer-free, age- and smoking-matched control participants in the Physicians' Health Study. We examined the associations of prediagnostic plasma levels of 25(OH)D and 1,25(OH)(2)D, individually and jointly, with total and aggressive disease, and explored whether relations between vitamin D metabolites and prostate cancer were modified by the functional VDR FokI polymorphism, using conditional logistic regression. Among these US physicians, the median plasma 25(OH)D levels were 25 ng/ml in the blood samples collected during the winter or spring and 32 ng/ml in samples collected during the summer or fall. Nearly 13% (summer/fall) to 36% (winter/spring) of the control participants were deficient in 25(OH)D (<20 ng/ml) and 51% (summer/fall) and 77% (winter/spring) had insufficient plasma 25(OH)D levels (<32 ng/ml). Plasma levels of 1,25(OH)(2)D did not vary by season. Men whose levels for both 25(OH)D and 1,25(OH)(2)D were below (versus above) the median had a significantly increased risk of aggressive prostate cancer (odds ratio [OR] = 2.1, 95% confidence interval [CI] 1.2–3.4), although the interaction between the two vitamin D metabolites was not statistically significant (p (interaction) = 0.23). We observed a significant interaction between circulating 25(OH)D levels and the VDR FokI genotype (p (interaction) < 0.05). Compared with those with plasma 25(OH)D levels above the median and with the FokI FF or Ff genotype, men who had low 25(OH)D levels and the less functional FokI ff genotype had increased risks of total (OR = 1.9, 95% CI 1.1–3.3) and aggressive prostate cancer (OR = 2.5, 95% CI 1.1–5.8). Among men with plasma 25(OH)D levels above the median, the ff genotype was no longer associated with risk. Conversely, among men with the ff genotype, high plasma 25(OH)D level (above versus below the median) was related to significant 60%∼70% lower risks of total and aggressive prostate cancer. CONCLUSIONS: Our data suggest that a large proportion of the US men had suboptimal vitamin D status (especially during the winter/spring season), and both 25(OH)D and 1,25(OH)(2)D may play an important role in preventing prostate cancer progression. Moreover, vitamin D status, measured by 25(OH)D in plasma, interacts with the VDR FokI polymorphism and modifies prostate cancer risk. Men with the less functional FokI ff genotype (14% in the European-descent population of this cohort) are more susceptible to this cancer in the presence of low 25(OH)D status
Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model
Background: Since the landmark study conducted by Huggins and Hodges in 1941, a failure to distinguish between the role of testosterone in prostate cancer development and progression has led to the prevailing opinion that high levels of testosterone increase the risk of prostate cancer. To date, this claim remains unproven.
Presentation of the Hypothesis: We present a novel dynamic mode of the relationship between testosterone and prostate cancer by hypothesizing that the magnitude of age-related declines in testosterone, rather than a static level of testosterone measured at a single point, may trigger and promote the development of prostate cancer.
Testing of the Hypothesis: Although not easily testable currently, prospective cohort studies with population-representative samples and repeated measurements of testosterone or retrospective cohorts with stored blood samples from different ages are warranted in future to test the hypothesis.
Implications of the Hypothesis: Our dynamic model can satisfactorily explain the observed age patterns of prostate cancer incidence, the apparent conflicts in epidemiological findings on testosterone and risk of prostate cancer, racial disparities in prostate cancer incidence, risk factors associated with prostate cancer, and the role of testosterone in prostate cancer progression. Our dynamic model may also have implications for testosterone replacement therapy
Nutrition and cancer: A review of the evidence for an anti-cancer diet
It has been estimated that 30–40 percent of all cancers can be prevented by lifestyle and dietary measures alone. Obesity, nutrient sparse foods such as concentrated sugars and refined flour products that contribute to impaired glucose metabolism (which leads to diabetes), low fiber intake, consumption of red meat, and imbalance of omega 3 and omega 6 fats all contribute to excess cancer risk. Intake of flax seed, especially its lignan fraction, and abundant portions of fruits and vegetables will lower cancer risk. Allium and cruciferous vegetables are especially beneficial, with broccoli sprouts being the densest source of sulforophane. Protective elements in a cancer prevention diet include selenium, folic acid, vitamin B-12, vitamin D, chlorophyll, and antioxidants such as the carotenoids (α-carotene, β-carotene, lycopene, lutein, cryptoxanthin). Ascorbic acid has limited benefits orally, but could be very beneficial intravenously. Supplementary use of oral digestive enzymes and probiotics also has merit as anticancer dietary measures. When a diet is compiled according to the guidelines here it is likely that there would be at least a 60–70 percent decrease in breast, colorectal, and prostate cancers, and even a 40–50 percent decrease in lung cancer, along with similar reductions in cancers at other sites. Such a diet would be conducive to preventing cancer and would favor recovery from cancer as well