446 research outputs found

    Revisiting the Hanbury Brown-Twiss set-up for fractional statistics

    Full text link
    The Hanbury Brown-Twiss experiment has proved to be an effective means of probing statistics of particles. Here, in a set-up involving edge-state quasiparticles in a fractional quantum Hall system, we show that a variant of the experiment composed of two sources and two sinks can be used to unearth fractional statistics. We find a clear cut signature of the statistics in the equal-time current-current correlation function for quasiparticle currents emerging from the two sources and collected at the sinks.Comment: 4 pages, 3 figure

    Investigating people: a qualitative analysis of the search behaviours of open-source intelligence analysts

    Get PDF
    The Internet and the World Wide Web have become integral parts of the lives of many modern individuals, enabling almost instantaneous communication, sharing and broadcasting of thoughts, feelings and opinions. Much of this information is publicly facing, and as such, it can be utilised in a multitude of online investigations, ranging from employee vetting and credit checking to counter-terrorism and fraud prevention/detection. However, the search needs and behaviours of these investigators are not well documented in the literature. In order to address this gap, an in-depth qualitative study was carried out in cooperation with a leading investigation company. The research contribution is an initial identification of Open-Source Intelligence investigator search behaviours, the procedures and practices that they undertake, along with an overview of the difficulties and challenges that they encounter as part of their domain. This lays the foundation for future research in to the varied domain of Open-Source Intelligence gathering

    Scientists Reflect on Why They Chose to Study Science

    Get PDF
    A concern commonly raised in literature and in media relates to the declining proportions of students who enter and remain in the ‘science pipeline’, and whether many countries, including Australia and New Zealand, have enough budding scientists to fill research and industry positions in the coming years. In addition, there is concern that insufficient numbers of students continue in science to ensure an informed, scientifically literate citizenry. The aim of the research presented in this paper was to survey current Australian and New Zealand scientists to explore their reasons for choosing to study science. An online survey was conducted via a link to SurveyGizmo. The data presented are from 726 respondents who answered 22 forced-choice items and an open-ended question about the reasons they chose to study science. The quantitative data were analysed using t tests and analyses of variance followed by Duncan’s multiple range tests, and the qualitative data were analysed thematically. The quantitative data showed that the main reasons scientists reported choosing to study science were because they were interested in science and because they were good at science. Secondary school science classes and one particular science teacher also were found to be important factors. Of much less importance were the prestige of science and financial considerations. The qualitative data expanded on these findings and showed that passion for science and/or curiosity about the world were important factors and also highlighted the importance of recreational pursuits, such as camping when a child. In the words of one respondent, ‘People don’t go into science for the money and glory. It’s passion for knowledge and science that always attracted me to the field’

    The Bose-Einstein distribution functions and the multiparticle production at high energies

    Get PDF
    The evolution properties of propagating particles produced at high energies in a randomly distributed environment are studied. The finite size of the phase space of the multiparticle production region as well as the chaoticity can be derived.Comment: 18 pages, LaTeX, no figures, no table

    Small size boundary effects on two-pion interferometry

    Full text link
    The Bose-Einstein correlations of two identically charged pions are derived when these particles, the most abundantly produced in relativistic heavy ion collisions, are confined in finite volumes. Boundary effects on single pion spectrum are also studied. Numerical results emphasize that conventional formulation usually adopted to describe two-pion interferometry should not be used when the source size is small, since this is the most sensitive case to boundary effects. Specific examples are considered for better illustration.Comment: more discussion on Figure4 and diffuse boundar

    Direct experimental evidence of free fermion antibunching

    Full text link
    Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.Comment: 4 pages, 2 figure

    Bose-Einstein source of intermittency in hadronic interactions

    Full text link
    The multi-particle Bose-Einstein correlations are the source of ''intermittency'' in high energy hadronic collisions. The power-law like increase of factorial moments with decreasing bin size was obtained by complete event weighing technique with gaussian approximation of space-time particle emitting source shape. The value of source size parameter was found to be higher than the common one fitted with the help of the standard Handbury Brown-Twiss procedure.Comment: 12

    On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types

    Full text link
    It is not widely appreciated that many subtleties are involved in the accurate measurement of intensity-correlated photons; even for the original experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4x4 array of single-photon avalanche diodes (SPADs), together with an off-chip algorithm for processing streaming data, we investigate the difficulties of measuring second-order photon correlations g2 in a wide variety of light fields that exhibit dramatically different correlation statistics: a multimode He-Ne laser, an incoherent intensity-modulated lamp-light source and a thermal light source. Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in any observation interval, with photon fluxes limited by detector saturation, in such a way that a correctly normalized g2 function is guaranteed. The impact of detector background correlations between SPAD pixels and afterpulsing effects on second-order coherence measurements is discussed. These results demonstrate that our monolithic SPAD array enables access to effects that are otherwise impossible to measure with stand-alone detectors.Comment: 17 pages, 6 figure
    • 

    corecore