551 research outputs found
Unleashing the Power of Proteomics to Develop Blood-Based Cancer Markers
BACKGROUND: There is an urgent need for blood-based molecular tests to assist in the detection and diagnosis of cancers at an early stage, when curative interventions are still possible, and to predict and monitor response to treatment and disease recurrence. The rich content of proteins in blood that are impacted by tumor devel-opment and host factors provides an ideal opportunity to develop noninvasive diagnostics for cancer. CONTENT: Mass spectrometry instrumentation has ad-vanced sufficiently to allow the discovery of protein alterations directly in plasma across no less than 7 or-ders of magnitude of protein abundance. Moreover, the use of proteomics to harness the immune response in the form of seropositivity to tumor antigens has the potential to complement circulating protein bio
Towards an integrated proteomic and glycomic approach to finding cancer biomarkers
Advances in mass spectrometry have had a great impact on the field of proteomics. A major challenge of proteomic analysis has been the elucidation of glycan modifications of proteins in complex proteomes. Glycosylation is the most structurally elaborate and diverse type of protein post-translational modification and, because of this, proteomics and glycomics have largely developed independently. However, given that such a large proportion of proteins contain glycan modifications, and that these may be important for their function or may produce biologically relevant protein variation, a convergence of the fields of glycomics and proteomics would be highly desirable. Here we review the current status of glycoproteomic efforts, focusing on the identification of glycoproteins as cancer biomarkers
Disease proteomics
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62680/1/nature01514.pd
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD
Biomarkers for Diagnosis and Prognosis of Sinusoidal Obstruction Syndrome after Hematopoietic Cell Transplantation.
Reliable, non-invasive methods for diagnosing and prognosing sinusoidal obstruction syndrome (SOS) early after hematopoietic cell transplantation (HCT) are needed. We used a quantitative mass spectrometry-based proteomics approach to identify candidate biomarkers of SOS by comparing plasma pooled from 20 patients with and 20 patients without SOS. Of 494 proteins quantified, we selected six proteins [L-Ficolin, vascular-cell-adhesion-molecule-1 (VCAM1), tissue-inhibitor of metalloproteinase-1, von Willebrand factor, intercellular-adhesion-molecule-1, and CD97] based on a differential heavy/light isotope ratio of at least 2 fold, information from the literature, and immunoassay availability. Next, we evaluated the diagnostic potential of these six proteins and five selected from the literature [suppression of tumorigenicity-2 (ST2), angiopoietin-2 (ANG2), hyaluronic acid (HA), thrombomodulin, and plasminogen activator inhibitor-1] in samples from 80 patients. The results demonstrate that together ST2, ANG2
Impact of Protein Stability, Cellular Localization, and Abundance on Proteomic Detection of Tumor-Derived Proteins in Plasma
Tumor-derived, circulating proteins are potentially useful as biomarkers for detection of cancer, for monitoring of disease progression, regression and recurrence, and for assessment of therapeutic response. Here we interrogated how a protein's stability, cellular localization, and abundance affect its observability in blood by mass-spectrometry-based proteomics techniques. We performed proteomic profiling on tumors and plasma from two different xenograft mouse models. A statistical analysis of this data revealed protein properties indicative of the detection level in plasma. Though 20% of the proteins identified in plasma were tumor-derived, only 5% of the proteins observed in the tumor tissue were found in plasma. Both intracellular and extracellular tumor proteins were observed in plasma; however, after normalizing for tumor abundance, extracellular proteins were seven times more likely to be detected. Although proteins that were more abundant in the tumor were also more likely to be observed in plasma, the relationship was nonlinear: Doubling the spectral count increased detection rate by only 50%. Many secreted proteins, even those with relatively low spectral count, were observed in plasma, but few low abundance intracellular proteins were observed. Proteins predicted to be stable by dipeptide composition were significantly more likely to be identified in plasma than less stable proteins. The number of tryptic peptides in a protein was not significantly related to the chance of a protein being observed in plasma. Quantitative comparison of large versus small tumors revealed that the abundance of proteins in plasma as measured by spectral count was associated with the tumor size, but the relationship was not one-to-one; a 3-fold decrease in tumor size resulted in a 16-fold decrease in protein abundance in plasma. This study provides quantitative support for a tumor-derived marker prioritization strategy that favors secreted and stable proteins over all but the most abundant intracellular proteins
Galectin-3 Cooperates with CD47 to Suppress Phagocytosis and T-cell Immunity in Gastric Cancer Peritoneal Metastases
UNLABELLED: The peritoneal cavity is a common site of gastric adenocarcinoma (GAC) metastasis. Peritoneal carcinomatosis (PC) is resistant to current therapies and confers poor prognosis, highlighting the need to identify new therapeutic targets. CD47 conveys a don\u27t eat me signal to myeloid cells upon binding its receptor signal regulatory protein alpha (SIRPα), which helps tumor cells circumvent macrophage phagocytosis and evade innate immune responses. Previous studies demonstrated that the blockade of CD47 alone results in limited clinical benefits, suggesting that other target(s) might need to be inhibited simultaneously with CD47 to elicit a strong antitumor response. Here, we found that CD47 was highly expressed on malignant PC cells, and elevated CD47 was associated with poor prognosis. Galectin-3 (Gal3) expression correlated with CD47 expression, and coexpression of Gal3 and CD47 was significantly associated with diffuse type, poor differentiation, and tumor relapse. Depletion of Gal3 reduced expression of CD47 through inhibition of c-Myc binding to the CD47 promoter. Furthermore, injection of Gal3-deficient tumor cells into either wild-type and Lgals3-/- mice led to a reduction in M2 macrophages and increased T-cell responses compared with Gal3 wild-type tumor cells, indicating that tumor cell-derived Gal3 plays a more important role in GAC progression and phagocytosis than host-derived Gal3. Dual blockade of Gal3 and CD47 collaboratively suppressed tumor growth, increased phagocytosis, repolarized macrophages, and boosted T-cell immune responses. These data uncovered that Gal3 functions together with CD47 to suppress phagocytosis and orchestrate immunosuppression in GAC with PC, which supports exploring a novel combination therapy targeting Gal3 and CD47.
SIGNIFICANCE: Dual inhibition of CD47 and Gal3 enhances tumor cell phagocytosis and reprograms macrophages to overcome the immunosuppressive microenvironment and suppress tumor growth in peritoneal metastasis of gastric adenocarcinoma
High-throughput genomic technology in research and clinical management of breast cancer. Plasma-based proteomics in early detection and therapy
Protein-based breast cancer biomarkers are a promising resource for breast cancer detection at the earliest and most treatable stages of the disease. Plasma is well suited to proteomic-based methods of biomarker discovery because it is easily obtained, is routinely used in the diagnosis of many diseases, and has a rich proteome. However, due to the vast dynamic range in protein concentration and the often uncertain tissue and cellular origin of plasma proteins, proteomic analysis of plasma requires special consideration compared with tissue and cultured cells. This review briefly touches on the search for plasma-based protein biomarkers for the early detection and treatment of breast cancer
- …