7 research outputs found
Application of layered poly (L-lactic acid) cell free scaffold in a rabbit rotator cuff defect model
<p>Abstract</p> <p>Background</p> <p>This study evaluated the application of a layered cell free poly (L-lactic acid) (PLLA) scaffold to regenerate an infraspinatus tendon defect in a rabbit model. We hypothesized that PLLA scaffold without cultivated cells would lead to regeneration of tissue with mechanical properties similar to reattached infraspinatus without tendon defects.</p> <p>Methods</p> <p>Layered PLLA fabric with a smooth surface on one side and a pile-finished surface on the other side was used. Novel form of layered PLLA scaffold was created by superimposing 2 PLLA fabrics. Defects of the infraspinatus tendon were created in 32 rabbits and the PLLA scaffolds were transplanted, four rabbits were used as normal control. Contralateral infraspinatus tendons were reattached to humeral head without scaffold implantation. Histological and mechanical evaluations were performed at 4, 8, and 16 weeks after operation.</p> <p>Results</p> <p>At 4 weeks postoperatively, cell migration was observed in the interstice of the PLLA fibers. Regenerated tissue was directly connected to the bone composed mainly of type III collagen, at 16 weeks postoperatively. The ultimate failure load increased in a time-dependent manner and no statistical difference was seen between normal infraspinatus tendon and scaffold group at 8 and 16 weeks postoperatively. There were no differences between scaffold group and reattach group at each time of point. The stiffness did not improve significantly in both groups.</p> <p>Conclusions</p> <p>A novel form of layered PLLA scaffold has the potential to induce cell migration into the scaffold and to bridge the tendon defect with mechanical properties similar to reattached infraspinatus tendon model.</p
Synthesis and Evaluation of Ni Catalysts Supported on BaCe0.5Zr0.3âxY0.2NixO3âδ with Fused-Aggregate Network Structure for the Hydrogen Electrode of Solid Oxide Electrolysis Cell
Nickel nanoparticles loaded on the electronâproton mixed conductor BaCe0.5Zr0.3âxY0.2NixO3âδ (Ni/BCZYN, x = 0 and 0.03) were synthesized for use in the hydrogen electrode of a proton-conducting solid oxide electrolysis cell (SOEC). The Ni nanoparticles, synthesized by an impregnation method, were from 45.8 nm to 84.1 nm in diameter, and were highly dispersed on the BCZYN. The BCZYN nanoparticles, fabricated by the flame oxide synthesis method, constructed a unique microstructure, the so-called âfused-aggregate network structureâ. The BCZYN nanoparticles have capability of constructing a scaffold for the hydrogen electrode with both electronically conducting pathways and gas diffusion pathways. The catalytic activity on Ni/BCZYN (x = 0 and 0.03) catalyst layers (CLs) improved with the circumference length of the Ni nanoparticles. Moreover, the catalytic activity on the Ni/BCZYN (x = 0.03) CL was higher than that of the Ni/BCZYN (x = 0) CL. BCZYN (x = 0.03) possesses higher electronic conductivity than BCZYN (x = 0) due to the Ni doping, resulting in an enlarged effective reaction zone (ERZ). We conclude that the proton reduction reaction in the ERZ was the rate-determining step on the hydrogen electrode, and the reaction was enhanced by improving the electronic conductivity of the electronâproton mixed conductor BCZYN
Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells
<p>Abstract</p> <p>Background</p> <p>Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 <it>in vitro</it>. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells <it>in vitro</it>.</p> <p>Methods</p> <p>The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining.</p> <p>Results</p> <p>TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1.</p> <p>Conclusion</p> <p>We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.</p