7 research outputs found

    Population, Epidemiological, and Functional Genetics of Gastric Cancer Candidate Genes in Peruvians with Predominant Amerindian Ancestry

    No full text
    Gastric adenocarcinoma is associated with chronic infection by Helicobacter pylori and with the host inflammatory response triggered by it, with substantial inter-person variation in the immune response profile due to host genetic factors. To investigate the diversity of the proinflammatory genes IL8, its receptors and PTGS2 in Amerindians; to test whether candidate SNPs in these genes are associated with gastric cancer in an admixed population with high Amerindian ancestry from Lima, Peru; and to assess whether an IL8RB promoter-derived haplotype affects gene expression. We performed a Sanger-resequencing population survey, a candidate-gene association study (220 cases, 288 controls) and meta-analyses. We also performed an in vitro validation by a reporter gene assay of IL8RB promoter. The diversity of the promoter of studied genes in Native Americans is similar to Europeans. Although an association between candidate SNPs and gastric cancer was not found in Peruvians, trend in our data is consistent with meta-analyses results that suggest PTGS2-rs689466-A is associated with H. pylori-associated gastric cancer in East Asia. IL8RB promoter-derived haplotype (rs3890158-A/rs4674258-T), common in Peruvians, was up-regulated by TNF-α unlike the ancestral haplotype (rs3890158-G/rs4674258-C). Bioinformatics analysis suggests that this effect stemmed from creation of a binding site for the FOXO3 transcription factor by rs3890158G>A. Our updated meta-analysis reinforces the role of PTGS2-rs689466-A in gastric cancer in Asians, although more studies that control for ancestry are necessary to clarify its role in Latin Americans. Finally, we suggest that IL8RB-rs3890158G>A is a cis-regulatory SNP

    Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations.

    Get PDF
    While South Americans are underrepresented in human genomic diversity studies, Brazil has been a classical model for population genetics studies on admixture. We present the results of the EPIGEN Brazil Initiative, the most comprehensive up-to-date genomic analysis of any Latin-American population. A population-based genome-wide analysis of 6,487 individuals was performed in the context of worldwide genomic diversity to elucidate how ancestry, kinship, and inbreeding interact in three populations with different histories from the Northeast (African ancestry: 50%), Southeast, and South (both with European ancestry >70%) of Brazil. We showed that ancestry-positive assortative mating permeated Brazilian history. We traced European ancestry in the Southeast/South to a wider European/Middle Eastern region with respect to the Northeast, where ancestry seems restricted to Iberia. By developing an approximate Bayesian computation framework, we infer more recent European immigration to the Southeast/South than to the Northeast. Also, the observed low Native-American ancestry (6-8%) was mostly introduced in different regions of Brazil soon after the European Conquest. We broadened our understanding of the African diaspora, the major destination of which was Brazil, by revealing that Brazilians display two within-Africa ancestry components: one associated with non-Bantu/western Africans (more evident in the Northeast and African Americans) and one associated with Bantu/eastern Africans (more present in the Southeast/South). Furthermore, the whole-genome analysis of 30 individuals (42-fold deep coverage) shows that continental admixture rather than local post-Columbian history is the main and complex determinant of the individual amount of deleterious genotypes

    Suggestive association between variants in IL1RAPL and asthma symptoms in Latin American children.

    No full text
    Several genome-wide association studies have been conducted to investigate the influence of genetic polymorphisms in the development of allergic diseases, but few of them have included the X chromosome. The aim of present study was to perform an X chromosome-wide association study (X-WAS) for asthma symptoms. The study included 1307 children of which 294 were asthma cases. DNA was genotyped using 2.5 HumanOmni Beadchip from Illumina. Statistical analyses were performed in PLINK 1.9, MACH 1.0 and Minimac2. The variant rs12007907 (g.29483892C>A) in IL1RAPL gene was suggestively associated with asthma symptoms in discovery set (odds ratio (OR)=0.49, 95% confidence interval (CI): 0.37-0.67; P=3.33 × 10-6). This result was replicated in the ProAr cohort in men only (OR=0.45, 95% CI: 0.21-0.95; P=0.038). Furthermore, investigating the functional role of the rs12007907 on the production a Th2-type cytokine, IL-13, we found a negative association between the minor allele A with IL-13 production in the discovery set (P=0.044). Gene-based analysis revealed that NUDT10 was the most consistently associated with asthma symptoms in discovery sample. In conclusion, the rs12007907 variant in IL1RAPL gene was negatively associated with asthma and IL-13 production in our study and a sex-specific association was observed in one of the validation samples. It suggests an effect on asthma susceptibility and may explain differences in severe asthma frequency between women and men

    Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries

    No full text
    The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-lambda 1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454-A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.N
    corecore