2 research outputs found

    Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication

    Get PDF
    Fabrication of homogenous CaCO3 particles is a significant step in assembling polyelectrolyte capsules. It is crucial to control the dimensions, the shape and the charge of the calcium carbonate particles in order to have homogenously separated and charged templates as final result. For this reason, previously. hey have been deeply investigated. Recently, crystallization of CaCO3 was done by adding poly (sodium 4-styrenesulfonate) (PSS) as negatively charged polymer and poly (allylamine hydrochloride) (PAH) as positively charged polymer and the results were surprising. The homogenous particles were separated and they carried the same charge of the used polymer. The aim of this work was to investigate the synthesis process of CaCO3 particles in different experimental conditions: calcium carbonate was produced in presence and in absence of water and with addition of appropriate polymers. In particular, chitosan (CHI) and poly acrylic acid (PAA) were chosen as biodegradable polymers whereas PSS and PAH were chosen as non-biodegradable polymers. Shape and diameter of particles were investigated by using transmission and scanning electron microscopy, elemental composition was inferred by energy dispersive X-ray analyses whereas their charges were explored by using zeta potential

    Polymeric nano-micelles as novel cargo-carriers for LY2157299 liver cancer cells delivery

    Get PDF
    LY2157299 (LY), which is very small molecule bringing high cancer diffusion, is a pathway antagonist against TGF\u3b2. LY dosage can be diluted by blood plasma, can be captured by immune system or it might be dissolved during digestion in gastrointestinal tract. The aim of our study is to optimize a "nano-elastic" carrier to avoid acidic pH of gastrointestinal tract, colon alkaline pH, and anti-immune recognition. Polygalacturonic acid (PgA) is not degradable in the gastrointestinal tract due to its insolubility at acidic pH. To avoid PgA solubility in the colon, we have designed its conjugation with Polyacrylic acid (PAA). PgA-PAA conjugation has enhanced their potential use for oral and injected dosage. Following these pre-requisites, novel polymeric nano-micelles derived from PgA-PAA conjugation and loading LY2157299 are developed and characterized. Efficacy, uptake and targeting against a hepatocellular carcinoma cell line (HLF) have also been demonstrated.LY2157299 (LY), which is very small molecule bringing high cancer diffusion, is a pathway antagonist against TGF\uce\ub2. LY dosage can be diluted by blood plasma, can be captured by immune system or it might be dissolved during digestion in gastrointestinal tract. The aim of our study is to optimize a \ue2\u80\u9cnano-elastic\ue2\u80\u9d carrier to avoid acidic pH of gastrointestinal tract, colon alkaline pH, and anti-immune recognition. Polygalacturonic acid (PgA) is not degradable in the gastrointestinal tract due to its insolubility at acidic pH. To avoid PgA solubility in the colon, we have designed its conjugation with Polyacrylic acid (PAA). PgA-PAA conjugation has enhanced their potential use for oral and injected dosage. Following these pre-requisites, novel polymeric nano-micelles derived from PgA-PAA conjugation and loading LY2157299 are developed and characterized. Efficacy, uptake and targeting against a hepatocellular carcinoma cell line (HLF) have also been demonstrated
    corecore