12 research outputs found

    Activated STAT1 suppresses proliferation of cultured rat mesangial cells

    Get PDF
    Activated STAT1 suppresses proliferation of cultured rat mesangial cells.BackgroundJAK-STAT signaling has been shown to promote development and proliferation in lymphopoietic and hematopoietic lineages. We investigated the effect of activated STAT1 on mesangial cell proliferation.MethodsRat mesangial cells of primary culture (rMCs) were used in the following experiments: (1) Whole cell lysates were immunoblotted against JAK1 and JAK2. (2) Whole cell lysates and nuclear proteins were extracted from rMCs with or without treatment with interferon-γ, and immunoblotting was performed against both STAT1 and tyrosine (701)-phosphorylated STAT1. (3) rMCs and rMCs electroporated with either wild-type STAT1, mutated STAT1, or antibody against STAT1 were incubated with interferon-γ for 20 hours, followed by a further incubation with [3H]-thymidine for four hours.ResultsJAK1, JAK2, and STAT1 were detected in whole cell lysates, suggesting that JAK-STAT signaling could be activated by interferon-γ (INF-γ). Using an antibody specific for tyrosine-phosphorylated STAT1, we detected signal in the INF-γ–treated nuclear extracts, which showed translocation of phosphorylated STAT1 to the nucleus. [3H]-thymidine incorporation in the presence of INF-γ was significantly lower than that of control in a dose-dependent manner. The introduction of wild-type STAT1 enhanced the effect of interferon-γ and decreased [3H]-thymidine incorporation, whereas tyrosine-mutated (Y701F) STAT1 and SH2 domain (R602T)-mutated STAT1 reversed INF-γ–induced suppression of [3H]-thymidine incorporation. Electroinjected antibody against STAT1 increased [3H]-thymidine incorporation upon stimulation with INF-γ.ConclusionSTAT1 activated by interferon-γ suppresses mesangial cell proliferation

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    A case of COVID‐19 with pernio‐like skin lesions and increased red blood cell distribution width

    No full text
    Heparin resistance has been observed in patients with active severe COVID‐19 infection. The red blood cell distribution (RDW), a component of the complete blood count that reflects cellular volume variation, has been shown to be associated with elevated risk for morbidity and mortality in a wide range of diseases. Cutaneous manifestations, RDW, and levels of LD and D‐dimer might be useful biomarkers in triage of patients with COVID‐19

    Liver injury with COVID-19 based on gastrointestinal symptoms and pneumonia severity.

    No full text
    Background/aimThe coronavirus disease 2019 (COVID-19) had become a big threat worldwide. Liver injury is not uncommon in patients with COVID-19, and clarifying its characteristics is needed. This study aimed to identify factors associated with liver injury and to develop a new classification of predictive severity in patients with COVID-19.MethodsConfirmed patients with COVID-19 (n = 60) were recruited retrospectively from Musashino Red Cross Hospital. The factors of liver injury especially on the elevation of liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) were analyzed. Grading was assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0.ResultsDuring a median hospitalization follow-up of 15 (4-41) days, 51 (85.0%) patients had COVID-19 pneumonia. In clinical courses, oxygenation was needed for 25 (41.6%) patients and intubation was needed for 9 (15.0%) patients. A total of 27 (45.0%) patients had gastrointestinal symptoms (GS), such as appetite loss, diarrhea, and nausea. A logistic regression analysis revealed that C-reactive protein (CRP) at baseline, oxygenation, intubation, and GS were significant factors of liver injury. Based on these results, patients were classified into three groups: group 1, no oxygenation pneumonia; group 2, pneumonia with oxygenation or GS; and group 3, intubation. We classified 25 (41.7%), 26 (43.3%), and 9 (15.0%) patients into mild, moderate, and severe groups, respectively. The peak of AST and ALT levels was significantly stratified with this criteria (mild [median AST, 28 IU/L; median ALT, 33 IU/L], moderate [median AST, 48 IU/L; median ALT, 47.5 IU/L], and severe [median AST, 109 IU/L; median ALT, 106 IU/L]; PConclusionCOVID-19-related liver injury was significantly stratified based on GS and severity of pneumonia

    Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    No full text
    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins

    Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants

    No full text
    The phytohormone auxin plays a central role in many as-pects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for>40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regula-tory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set o
    corecore