3 research outputs found

    3D mapping of the SPRY2 domain of ryanodine receptor 1 by single-particle Cryo-EM

    Get PDF
    The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca(2+) release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform.The authors want to thank the Brigham and Women’s Hospital Biomedical Research Institute (to MS), the Australian National Health and the Medical Research Council (471418 to AD, MC and PB), and the European Commission (Marie Curie Action PIOF-GA-2009-237120 to AP-M)

    3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM

    Get PDF
    The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform

    The elusive role of the SPRY2 domain in RyR1

    No full text
    The second of three SPRY domains (SPRY2, S1085-V1208) located in the skeletal muscle ryanodine receptor (RyR1) is contained within regions of RyR1 that influence EC coupling and bind to imperatoxin A, a toxin probe of RyR1 channel gating. We examined the binding of the F loop (P1107-A1121) in SPRY2 to the ASI/basic region in RyR1 (T3471-G3500, containing both alternatively spliced (ASI) residues and neighboring basic amino acids). We then investigated the possible influence of this interaction on excitation contraction (EC) coupling. A peptide with the F loop sequence and an antibody to the SPRY2 domain each enhanced RyR1 activity at low concentrations and inhibited at higher concentrations. A peptide containing the ASI/basic sequence bound to SPRY2 and binding decreased ∼10-fold following mutation or structural disruption of the basic residues. Binding was abolished by mutation of three critical acidic F loop residues. Together these results suggest that the ASI/basic and SPRY2 domains interact in an F loop regulatory module. Although a region that includes the SPRY2 domain influences EC coupling, as does the ASI/basic region, Ca2+ release during ligand- and depolarization-induced RyR1 activation were not altered by mutation of the three critical F loop residues following expression of mutant RyR1 in RyR1-null myotubes. Therefore the electrostatic regulatory interaction between the SPRY2 F loop residues (that bind to imperatoxin A) and the ASI/basic residues of RyR1 does not influence bi-directional DHPR-RyR1 signaling during skeletal EC coupling, possibly because the interaction is interrupted by the influence of factors present in intact muscle cells
    corecore