8,302 research outputs found

    A Hierarchical Game with Strategy Evolution for Mobile Sponsored Content and Service Markets

    Full text link
    In sponsored content and service markets, the content and service providers are able to subsidize their target mobile users through directly paying the mobile network operator, to lower the price of the data/service access charged by the network operator to the mobile users. The sponsoring mechanism leads to a surge in mobile data and service demand, which in return compensates for the sponsoring cost and benefits the content/service providers. In this paper, we study the interactions among the three parties in the market, namely, the mobile users, the content/service providers and the network operator, as a two-level game with multiple Stackelberg (i.e., leader) players. Our study is featured by the consideration of global network effects owning to consumers' grouping. Since the mobile users may have bounded rationality, we model the service-selection process among them as an evolutionary-population follower sub-game. Meanwhile, we model the pricing-then-sponsoring process between the content/service providers and the network operator as a non-cooperative equilibrium searching problem. By investigating the structure of the proposed game, we reveal a few important properties regarding the equilibrium existence, and propose a distributed, projection-based algorithm for iterative equilibrium searching. Simulation results validate the convergence of the proposed algorithm, and demonstrate how sponsoring helps improve both the providers' profits and the users' experience

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    Optimal Pricing-Based Edge Computing Resource Management in Mobile Blockchain

    Full text link
    As the core issue of blockchain, the mining requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to high computing power needed. Thus, the development of blockchain in mobile applications is restricted. In this paper, we consider the edge computing as the network enabler for mobile blockchain. In particular, we study optimal pricing-based edge computing resource management to support mobile blockchain applications where the mining process can be offloaded to an Edge computing Service Provider (ESP). We adopt a two-stage Stackelberg game to jointly maximize the profit of the ESP and the individual utilities of different miners. In Stage I, the ESP sets the price of edge computing services. In Stage II, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for uniform and discriminatory pricing schemes. Further, the existence and uniqueness of Stackelberg game are validated for both pricing schemes. At last, the performance evaluation shows that the ESP intends to set the maximum possible value as the optimal price for profit maximization under uniform pricing. In addition, the discriminatory pricing helps the ESP encourage higher total service demand from miners and achieve greater profit correspondingly.Comment: 7 pages, submitted to one conference. arXiv admin note: substantial text overlap with arXiv:1710.0156

    Privacy Management and Optimal Pricing in People-Centric Sensing

    Full text link
    With the emerging sensing technologies such as mobile crowdsensing and Internet of Things (IoT), people-centric data can be efficiently collected and used for analytics and optimization purposes. This data is typically required to develop and render people-centric services. In this paper, we address the privacy implication, optimal pricing, and bundling of people-centric services. We first define the inverse correlation between the service quality and privacy level from data analytics perspectives. We then present the profit maximization models of selling standalone, complementary, and substitute services. Specifically, the closed-form solutions of the optimal privacy level and subscription fee are derived to maximize the gross profit of service providers. For interrelated people-centric services, we show that cooperation by service bundling of complementary services is profitable compared to the separate sales but detrimental for substitutes. We also show that the market value of a service bundle is correlated with the degree of contingency between the interrelated services. Finally, we incorporate the profit sharing models from game theory for dividing the bundling profit among the cooperative service providers.Comment: 16 page
    corecore