271 research outputs found

    PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection

    Full text link
    Contexts play an important role in the saliency detection task. However, given a context region, not all contextual information is helpful for the final task. In this paper, we propose a novel pixel-wise contextual attention network, i.e., the PiCANet, to learn to selectively attend to informative context locations for each pixel. Specifically, for each pixel, it can generate an attention map in which each attention weight corresponds to the contextual relevance at each context location. An attended contextual feature can then be constructed by selectively aggregating the contextual information. We formulate the proposed PiCANet in both global and local forms to attend to global and local contexts, respectively. Both models are fully differentiable and can be embedded into CNNs for joint training. We also incorporate the proposed models with the U-Net architecture to detect salient objects. Extensive experiments show that the proposed PiCANets can consistently improve saliency detection performance. The global and local PiCANets facilitate learning global contrast and homogeneousness, respectively. As a result, our saliency model can detect salient objects more accurately and uniformly, thus performing favorably against the state-of-the-art methods

    COMPARISON OF MOVEMENT CHARACTERISTIC AND MUSCLE ACTIVATION BETWEEN DIFFERENT FITNESS HOOPS

    Get PDF
    Purpose: To compare the movement characteristics and muscle activation between Hula Hoop (HL) and Mini Hoop (MH). Methods: Sixteen healthy females randomly used HL and MH three minutes, respectively. Motion Analysis System and Noraxon wireless surface electromyography (EMG) were used to measure the movement characteristics and muscle activation. The paired t-test was used to test the difference between MH and HL. Results: The HL had larger in range of hip motion and root mean square of EMG in spinal erectors than MH (p < .05); the MH had higher in movement frequency (cycles per second) and median frequency of EMG in spinal erectors than HL (p < .05). Conclusion: Two fitness hoops have different movement characteristics and muscle action due to the different equipment design

    EFFECT OF EIGHT WEEKS VIBRATION TRAINING ON THE LOWER LIMB BASIC ABILITY AND ATHLETIC PERFORMANCE OF GYMNASTS

    Get PDF
    The purpose of this study explores the effects of 8 weeks vibration training on the basic ability (explosive power, speed, agility) and athletic performance (backward somersault) of the lower limbs of gymnasts. Sixteen gymnasts were randomly divided into vibration training group (VT) and control group (CON). Participants were trained for eight weeks and performed countermovement jump (CMJ), sprints, shuttle run, and backward somersault tests before the training, after 4 weeks, and 8 weeks of training. The significant level was set to α = .05. The results showed that the speed of VT increased significantly after 4 weeks of training, and the speed and agility of VT increased significantly after 8 weeks of training (p \u3c.05). In conclusion, Gymnasts can improve their speed ability through 4 weeks of vibration training, and 8 weeks vibration training can improve their speed and agility

    Ocimum gratissimum Aqueous Extract Induces Apoptotic Signalling in Lung Adenocarcinoma Cell A549

    Get PDF
    Ocimum gratissimum (OG) is widely used as a traditional herb for its antibacterial activity in Taiwan. Recently, antitumor effect of OG on breast cancer cell is also reported; however, the effects of OG on human pulmonary adenocarcinoma cell A549 remain unclear. Therefore, we aimed to investigate whether aqueous OG extract (OGE) affects viability of A549 cells and the signals induced by OGE in A549 cells. Cell viability assays revealed that OGE significantly and dose-dependently decreased the viability of A549 cell but not that of BEAS-2B cell. Morphological examination and DAPI staining indicated that OGE induced cell shrinkage and DNA condensation for A549 cells. Further investigation showed that OGE enhanced activation of caspase-3, caspase-9 and caspase-8 and increased protein level of Apaf-1 and Bak, but diminished the level of Bcl-2. Additionally, OGE inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) yet enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAP kinase (p38). In conclusion, our findings indicate that OGE suppressed the cell viability of A549 cells, which may result from the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling, suggesting that OGE might be beneficial to lung carcinoma treatment

    Fabrication of a Miniature Zinc Aluminum Oxide Nanowire Array Gas Sensor and Application for Environmental Monitoring

    Get PDF
    A miniature n-type semiconductor gas sensor was fabricated successfully using zinc aluminum oxide nanowire array and applied to sense oxygen. The present study provided a novel method to produce zinc aluminum alloy nanowire 80 nm in diameter by the vacuum die casting technique and then obtain zinc aluminum oxide nanowire array using the thermal oxidation technique. The gas sensing properties were evaluated through the change of the sensitivity. The factors influencing the sensitivity of the gas sensor, such as the alloy composition, operating temperature, and oxygen concentration, were investigated further. Experimental results indicated that the maximum sensitivity could be acquired when the weight percentage of aluminum was 5% in zinc aluminum alloy at the operating temperature of 200°C

    Ocimum gratissimum Aqueous Extract Protects H9c2 Myocardiac Cells from H2O2-Induced Cell Apoptosis through Akt Signalling

    Get PDF
    Increased cell death of cardiomyocyte by oxidative stress is known to cause dysfunction of the heart. O. gratissimum is one of the more well-known medicinal plants among the Ocimum species and widely used in treatment of inflammatory diseases. In this study, we hypothesized that aqueous extract of O. gratissimum leaf (OGE) may protect myocardiac cell H9c2 from oxidative injury by hydrogen peroxide (H2O2). Our results revealed that OGE pretreatment dose-dependently protects H9c2 cells from cell death when exposed to H2O2. Additionally, DNA condensation induced by H2O2 was also reduced by OGE pretreatment, suggesting that Ocimum gratissimum extract may attenuate H2O2-induced chromosome damage. Further investigation showed that OGE pretreatment inhibited H2O2-induced activation of caspase-3 and caspase-9, as well as H2O2-induced upregulation of proapoptotic Apaf-1 and the release of cytosolic cytochrome c, but has little effect on the activation of caspase-8. Additionally, OGE pretreatment significantly upregulated Bcl-2 expression and Akt phosphorylation, and slightly affected the phosphorylation of mitogen-activated protein kinases including p38 MAPK and JNK. Taken together, our findings revealed that Ocimum gratissimum extract effectively inhibited the mitochondrial pathway and upregulated Bcl-2 expression, which may be important in protecting H9c2 cells from H2O2-induced cell death

    TABLE OF CASES

    Get PDF
    <p>Main effects: trial: p<.001; time: p<.001; interaction: p<.001. **p<.01; ***p<0.01.</p

    A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation

    Get PDF
    Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway
    corecore