6,528 research outputs found

    Calcium Uptake and Release through Sarcoplasmic Reticulum in the Inferior Oblique Muscles of Patients with Inferior Oblique Overaction

    Get PDF
    We characterized and compared the characteristics of Ca2+ movements through the sarcoplasmic reticulum of inferior oblique muscles in the various conditions including primary inferior oblique overaction (IOOA), secondary IOOA, and controls, so as to further understand the pathogenesis of primary IOOA. Of 15 specimens obtained through inferior oblique myectomy, six were from primary IOOA, 6 from secondary IOOA, and the remaining 3 were controls from enucleated eyes. Ryanodine binding assays were performed, and Ca2+ uptake rates, calsequestrins and SERCA levels were determined. Ryanodine bindings and sarcoplasmic reticulum Ca2+ uptake rates were significantly decreased in primary IOOA (p<0.05). Western blot analysis conducted to quantify calsequestrins and SERCA, found no significant difference between primary IOOA, secondary IOOA, and the controls. Increased intracellular Ca2+ concentration due to reduced sarcoplasmic reticulum Ca2+ uptake may play a role in primary IOOA

    Enhancing a Convolutional Autoencoder with a Quantum Approximate Optimization Algorithm for Image Noise Reduction

    Full text link
    Image denoising is essential for removing noise in images caused by electric device malfunctions or other factors during image acquisition. It helps preserve image quality and interpretation. Many convolutional autoencoder algorithms have proven effective in image denoising. Owing to their promising efficiency, quantum computers have gained popularity. This study introduces a quantum convolutional autoencoder (QCAE) method for improved image denoising. This method was developed by substituting the representative latent space of the autoencoder with a quantum circuit. To enhance efficiency, we leveraged the advantages of the quantum approximate optimization algorithm (QAOA)-incorporated parameter-shift rule to identify an optimized cost function, facilitating effective learning from data and gradient computation on an actual quantum computer. The proposed QCAE method outperformed its classical counterpart as it exhibited lower training loss and a higher structural similarity index (SSIM) value. QCAE also outperformed its classical counterpart in denoising the MNIST dataset by up to 40% in terms of SSIM value, confirming its enhanced capabilities in real-world applications. Evaluation of QAOA performance across different circuit configurations and layer variations showed that our technique outperformed other circuit designs by 25% on average.Comment: 11 pages, 12 figures and 1 tabl

    Symmetry-protected flatband condition for Hamiltonians with local symmetry

    Full text link
    We derive symmetry-based conditions for tight-binding Hamiltonians with flatbands to have compact localized eigenstates occupying a single unit cell. The conditions are based on unitary operators commuting with the Hamiltonian and associated with local symmetries that guarantee compact localized states and a flatband. We illustrate the conditions for compact localized states and flatbands with simple Hamiltonians with given symmetries. We also apply these results to general cases such as the Hamiltonian with long-range hoppings and higher-dimensional Hamiltonian.Comment: 7 pages, 2 figure

    ArrayXPath II: mapping and visualizing microarray gene-expression data with biomedical ontologies and integrated biological pathway resources using Scalable Vector Graphics

    Get PDF
    Summary: ArrayXPath () is a web-based service for mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics (SVG). Deciphering the crosstalk among pathways and integrating biomedical ontologies and knowledge bases may help biological interpretation of microarray data. ArrayXPath is empowered by integrating gene-pathway, disease-pathway, drug-pathway and pathway–pathway correlations with integrated Gene Ontology, Medical Subject Headings and OMIM Morbid Map-based annotations. We applied Fisher's exact test and relative risk to evaluate the statistical significance of the correlations. ArrayXPath produces Javascript-enabled SVGs for web-enabled interactive visualization of gene-expression profiles integrated with gene-pathway-disease interactions enriched by biomedical ontologies

    Performance evaluation on GNSS, wheel speed sensor, yaw rate sensor, and gravity sensor integrated positioning algorithm for automotive navigation system

    Get PDF
    The Global Navigation Satellite System (GNSS) positioning technique is widely used for the automotive navigation system since it can provide the stable and accurate position and velocity in the most road environments at an affordable price. However, the performance of GNSS positioning technique is degraded in certain areas, where GNSS signals are blocked by buildings and tunnel. To overcome this problem, the GNSS positioning technique should be integrated with dead reckoning (DR) sensors such as accelerometer, gyroscope, and odometer. Recently, the most passenger cars are equipped with the Advanced Driver Assistance System (ADAS) based on numerous sensors to improve safety and convenience in driving. Among sensors for the ADAS, vehicle dynamic sensors such as wheel speed sensor (WSS), yaw rate sensor (YRS), gravity sensor (GS) can be used for the DR algorithm since those sensors measure vehicle’s motions. Therefore, this paper evaluates the vehicle positioning algorithm that integrate the GNSS with a three-dimensional dead reckoning based on WSS, YRS, and GS. The vehicle positioning algorithm is implemented through the extended Kalman filter of a loosely-coupled mode. Performance was evaluated through tests carried out in real driving trajectory including various GNSS signals reception environments. It is found that the proposed algorithm can be an alternative solution to compensate the limitation of the GNSS positioning technique, without the use of a low-cost inertial measurement unit

    Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Get PDF
    Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN) algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space

    Thyroid Isthmus Length and Iodine Turnover as Predictors of Successful Radioactive Iodine Therapy in Patients with Graves’ Disease

    Get PDF
    Radioactive iodine (RAI) therapy is an effective treatment option for Graves’ disease. However, predicting treatment failures after RAI therapy remains controversial. The objective of this study was to investigate the factors associated with the success rate of RAI therapy for treatment of Graves’ hyperthyroidism. Thyroid functional outcome, pre-RAI ultrasonographic features, and clinical parameters were evaluated retrospectively in 98 patients followed up for at least 12 months after RAI (mean RAI dose was 11.7 ± 1.8 mCi). Hypothyroidism was achieved in 59 patients (60.2%), and euthyroidism in 16 patients (16.3%), while 23 patients (23.5%) remained hyperthyroid. Age, sex, body mass index, pre-RAI thyroid function, or thyroid-stimulating immunoglobulin levels were not associated with treatment outcome. Length of thyroid isthmus (p=0.028) and 2- to 24-hour iodine uptake ratios (p=0.002) were significantly associated with treatment failure, which was defined as a persistent hyperthyroid status after RAI therapy. Patients with a longer isthmus had a higher risk of remaining hyperthyroid, with a threshold for isthmus length of 5.2 mm, with a sensitivity of 69.6% and specificity of 70.3% for treatment success. Measuring the length of the thyroid isthmus can be a simple and useful way to predict RAI treatment outcome
    corecore