3,619 research outputs found
Synthesis of Zeolite Nanomolecular Sieves of Different Si/Al Ratios
Nanosized zeolite molecular sieves of different Si/Al ratios have been prepared using microwave hydrothermal reactor (MHR) for their greater application in separation and catalytic science. The as-synthesized molecular sieves belong to four different type zeolite families: MFI (infinite and high silica), FAU (moderate silica), LTA (low silica and high alumina), and AFI (alumina rich and silica-free). The phase purity of molecular sieves has been assessed by X-ray diffraction (XRD) analysis and morphological evaluation done by electron microscopy. Broad XRD peaks reveal that each zeolite molecular sieve sample is composed of nanocrystallites. Scanning electron microscopic images feature the notion that the incorporation of aluminum to MFI zeolite synthesis results in morphological change. The crystals of pure silica MFI zeolite (silicalite-1) have hexagon lump/disk-like shape, whereas MFI zeolite particles with Si/Al molar ratios 250 and 100 have distorted hexagonal lump/disk and pseudo spherical shapes, respectively. Furthermore, phase pure zeolite nanocrystals of octahedron (FAU), cubic (LTA), and rod (AFI) shape have been synthesized. The average sizes of MFI, FAU, LTA, and AFI zeolite crystals are 250, 150, 50, and 3000βnm, respectively. Although the length of AFI zeolite rods is in micron scale, the thickness and width are of a few nanometers
Role of Staphylococcal Superantigen in Atopic Dermatitis: Influence on Keratinocytes
Staphylococcus aureus may perform an crucial function in atopic dermatitis (AD), via the secretion of superantigens, including staphylococcal enterotoxins (SE) A or B, and toxic shock syndrome toxin-1 (TSST-1). Dysregulated cytokine production by keratinocytes (KCs) upon exposure to staphylococcal superantigens (SsAgs) may be principally involved in the pathophysiology of AD. We hypothesized that lesional KCs from AD may react differently to SsAgs compared to nonlesional skin or normal skin from nonatopics. We conducted a comparison of HLA-DR or CD1a expression in lesional skin as opposed to that in nonlesional or normal skin by immunohistochemistry (IHC). We also compared, using ELISA, the levels of IL-1Ξ±, IL-1Ξ², and TNF-Ξ± secreted by cultured KCs from lesional, nonlesional, and normal skin, after the addition of SEA, SEB and TSST-1. IHC revealed that both HLA-DR and CD1a expression increased significantly in the epidermis of lesional skin versus nonlesional or normal skin in quite a similar manner. IL-1Ξ±, IL-1Ξ², and TNF-Ξ± secretion was also significantly elevated in the cultured KCs from lesional skin after the addition of SsAgs. Our results indicated that KCs from lesional skin appear to react differently to SsAgs and increased proinflammatory cytokine production in response to SsAgs may contribute to the pathogenesis of AD
Development of carbon-based adsorbent for separation of impurities such as siloxane and ammonia from land-fill gas
Land-fill gas or bio-gas is composed of large portion of methane and carbon dioxide, and small amount of impurities such as nitrogen, oxygen, hydrogen sulfide, siloxane and ammonia. These gases can be used as a gas-fuel after upgrading treatment. For the application of the land-fill gas and bio-gas as a fuel, we developed highly-performing carbon-based adsorbent which can separate siloxane and ammonia residue from these gases. It was quite necessary to consider the chemical properties of siloxane and ammonia for development of suitable adsorbent of each component. The siloxane can be polymerized in acidic or basic condition to form bulkier species which causes adsorbent deactivation and difficult regeneration. The ammonia gas is well known as basic molecules which have strong affinity to acidic species. In these reasons, we prepared neutral carbon materials by various methods for siloxane adsorption. In addition, we developed carbon-based basic ammonia-adsorbent by simple methods such as the chemical treatment of commercial activated carbon or the impregnation of organic molecules into the activated carbon. And then, adsorption-desorption isotherms and breakthrough curve of siloxane and ammonia were measured for thus synthesized adsorbents. Detail results for synthesis and the adsorption measurement of the studied adsorbents will be presented in the conference
Papez Circuit Observed by in vivo Human Brain With 7.0T MRI Super-Resolution Track Density Imaging and Track Tracing
The Papez circuit has been considered as an important anatomical substrate involved in emotional experience. However, the circuit remains difficult to elucidate in the human brain due to the resolution limit of current neuroimaging modalities. In this article, for the first time, we report the direct visualization of the Papez circuit with 7-Tesla super-resolution magnetic resonance tractography. Two healthy, young male subjects (aged 30 and 35 years) were recruited as volunteers following the guidelines of the institutional review board (IRB). Track density imaging (TDI) generation with track tracing was performed using MRtrix software package. With these tools, we were able to visualize the entire Papez circuit. We believe this is the first study to visualize the complete loop of the Papez circuit, including the perforant path (PP), thalamocortical fibers of the anterior nucleus (AN), and mammillothalamic tract (MTT), which were hitherto difficult to visualize by conventional imaging techniques
Effects of Protein-Enriched Nutritional Support on Skeletal Muscle Mass and Rehabilitative Outcomes in Brain Tumor Patients: A Randomized Controlled Trial
Patients with brain tumors require extensive and prolonged rehabilitation efforts as they suffer from lesion-induced motor weakness as well as treatment-related side effects, often leading to a significant decline in function. Protein supplements have shown positive effects on promoting muscle strength and physical performance in various tumor etiologies. However, reports on their effects specifically in brain tumor patients remain scarce. This study aims to investigate the feasibility and efficacy of protein supplements in enhancing rehabilitative outcomes via muscle strengthening and functional gain in brain tumor patients with neurological demise. Sixty brain tumor patients were randomly assigned to either a protein supplement or a control group, receiving either protein supplements or a placebo for 6 weeks, in conjunction with conventional rehabilitation therapy. Assessments before and after the intervention included laboratory tests, anthropometric measures using bioimpedance analysis, and functional assessments, which included the MMSE, the modified Barthel Index, the Beck Depression Inventory, the Brief Fatigue Inventory, the Timed Up and Go test, the 6-min walk test, the isokinetic quadriceps muscle strength test, and the handgrip power. After the intervention, the levels of serum hemoglobin, protein, albumin, and C-reactive protein were improved in both groups, however, the change was significant only in the protein group. The muscle strength was enhanced in both groups, however, the significant increase in pinch grasp power was only noted in the protein group (Pβ\u3cβ0.05). The distance on 6MWT was also significantly extended at follow-up in the protein group (Pβ\u3cβ0.01). In the subgroup analysis according to nutritional status, the moderate malnutrition group showed greater augmentation of muscle mass than those with adequate nutrition (Pβ\u3cβ0.05). Interestingly, the amelioration of malnutrition was observed only the in protein group. This study using protein supplements to promote the rehabilitative potential of brain tumor patients revealed a significant effect on improving hemodynamic nutritional indices, muscle power reimbursement, and functional improvement, especially in malnourished patients. The safety and feasibility of protein supplements in brain tumor patients were affirmative in this study. Further studies with more patients may help confirm the secondary functional gain resulting from increased muscle power.Trial registration: This study was retrospectively registered in the Clinical Research Information Service, CRIS no. KCT0009113 on Jan 12, 2024
GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties
GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5β11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5βcm3 gβ1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4βmg gβ1) and P7 (1388.8βmg gβ1) samples reveal that these two particular samples can absorb even more water than their own weights
TrkB agonist antibody pretreatment enhances neuronal survival and long-term sensory motor function following hypoxic ischemic injury in neonatal rats
Perinatal hypoxic ischemia (H-I) causes brain damage and long-term neurological impairments, leading to motor dysfunctions and cerebral palsy. Many studies have demonstrated that the TrkB-ERK1/2 signaling pathway plays a key role in mediating the protective effect of brain-derived neurotrophic factor (BDNF) following perinatal H-I brain injury in experimental animals. In the present study, we explored the neuroprotective effects of the TrkB-specific agonist monoclonal antibody 29D7 on H-I brain injury in neonatal rats. First, we found that intracerebroventricular (icv) administration of 29D7 in normal P7 rats markedly increased the levels of phosphorylated ERK1/2 and phosphorylated AKT in neurons up to 24 h. Second, P7 rats received icv administration of 29D7 and subjected to H-I injury induced by unilateral carotid artery ligation and exposure to hypoxia (8% oxygen). We found that 29D7, to a similar extent to BDNF, significantly inhibited activation of caspase-3, a biochemical hallmark of apoptosis, following H-I injury. Third, we found that this 29D7-mediated neuroprotective action persisted at least up to 5 weeks post-H-I injury as assessed by brain tissue loss, implicating long-term neurotrophic effects rather than an acute delay of cell death. Moreover, the long-term neuroprotective effect of 29D7 was tightly correlated with sensorimotor functional recovery as assessed by a tape-removal test, while 29D7 did not significantly improve rotarod performance. Taken together, these findings demonstrate that pretreatment with the TrkB-selective agonist 29D7 significantly increases neuronal survival and behavioral recovery following neonatal hypoxic-ischemic brain injury
Adsorptive removal of CO2 from CO2-CH4 mixture using cation-exchanged zeolites
Raw natural gas and landfill gas contains methane as its major component, but it also contains considerable amounts of contaminants such as CO2 and H2S (i.e. acid gases) that can cause corrosion and fouling of the pipeline and equipment during transportation and liquefaction. Amine-based CO2 gas removal processes have been employed in the gas industry, but these processes have disadvantages including high regeneration energy requirements and inefficiencies; these issues have not been adequately solved to date. Currently, adsorptive acid gas removal technologies have received significant interest because of the simplicity of adsorbent regeneration by thermal or pressure variation1). Numerous micro- and mesoporous adsorbents including zeolites [2-3], titanosilicates[4], activated carbons[5-6], metal-organic-framework (MOF) [7], and silica-alumina materials[8-9] were studied for this type of application. However, the CO2/CH4 selectivity of the aforementioned adsorbents was not high enough for commercial applications.In this study, different cation-exchanged zeolites were synthesized, physicochemically characterized, and evaluated for adsorptive removal of CO2 from CO2-CH4 mixtures. The adsorption isotherms of CO2 and CH4 in the pressure and temperature ranges 0 β 3MPa and 10 β 40 oC, respectively, for different cation-exchanged zeolites were measured and compared. The ideal-adsorbed solution theory (IAST) was employed for the estimation of CO2/CH4 selectivity for the different cation-exchanged zeolites.
References
1) D. Aaron, C. Tsouris, Separ. Sci. Technol. 2005, 40, 321β348
2) J. Collins, US Patent No. 3,751,878. 1973.
3) M. W. Seery, US Patent No. 5,938,819. 1999
4) W. B. Dolan, M.J. Mitariten, US Patent No. 6,610,124 B1. 2003
5) A. Kapoor, R.T. Yang, Chem. Eng. Sci. 1989, 44, 1723β1733
6) A. Jayaraman, Chiao, A. S.; Padin, J.; Yang, R. T.; Munson, C. L., Separ. Sci. Technol. 2002 37, 2505β2528
7) L. Hamon, E. Jolimaitre, G. Pringruber , Ind. Eng. Chem. Res. 2010, 49, 7497-7503
8) W.B. Dolan, M.J. Mitariten, US patent No. 2003/0047071, 2003
9) G. Bellussi, P. Broccia, A. Carati, R. Millini, P. Pollesel, C. Rizzo, M. Tagliabue, Micropor. Mesopor. Mat., 2011, 146, 134β14
- β¦