35,363 research outputs found

    Cataclysmic Variables with Evolved Secondaries and the Progenitors of AM CVn Stars

    Get PDF
    We present the results of a systematic study of cataclysmic variables (CVs) and related systems, combining detailed binary-population synthesis (BPS) models with a grid of 120 binary evolution sequences calculated with a Henyey-type stellar evolution code. In these sequences, we used 3 masses for the white dwarf (0.6, 0.8, 1.0 Msun) and seven masses for the donor star in the range of 0.6-1.4 Msun. The shortest orbital periods were chosen to have initially unevolved secondaries, and the longest orbital period for each secondary mass was taken to be just longer than the bifurcation period (16 - 22 hr), beyond which systems evolve towards long orbital periods. These calculations show that systems which start with evolved secondaries near the end or just after their main-sequence phase become ultra-compact systems with periods as short as 7 min. These systems are excellent candidates for AM CVn stars. Using a standard BPS code, we show how the properties of CVs at the beginning of mass transfer depend on the efficiency for common-envelope (CE) ejection and the efficiency of magnetic braking. In our standard model, where CE ejection is efficient, some 10 per cent of all CVs have initially evolved secondaries (with a central hydrogen abundance X_c < 0.4) and ultimately become ultra-compact systems (implying a Galactic birthrate for AM CVn-like stars of 10^{-3} yr^{-1}). Almost all CVs with orbital periods longer than 5 hr are found to have initially evolved or relatively massive secondaries. We show that their distribution of effective temperatures is in good agreement with the distribution of spectral types obtained by Beuermann et al. (1998).Comment: 16 pages, 6 figures (Fig. 4 in reduced format). Submitted to MNRA

    Coauthor prediction for junior researchers

    Get PDF
    Research collaboration can bring in different perspectives and generate more productive results. However, finding an appropriate collaborator can be difficult due to the lacking of sufficient information. Link prediction is a related technique for collaborator discovery; but its focus has been mostly on the core authors who have relatively more publications. We argue that junior researchers actually need more help in finding collaborators. Thus, in this paper, we focus on coauthor prediction for junior researchers. Most of the previous works on coauthor prediction considered global network feature and local network feature separately, or tried to combine local network feature and content feature. But we found a significant improvement by simply combing local network feature and global network feature. We further developed a regularization based approach to incorporate multiple features simultaneously. Experimental results demonstrated that this approach outperformed the simple linear combination of multiple features. We further showed that content features, which were proved to be useful in link prediction, can be easily integrated into our regularization approach. © 2013 Springer-Verlag

    Magnetoresistance in the superconducting state at the (111) LaAlO3_3/SrTiO3_3 interface

    Full text link
    Condensed matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order is known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3_3 (LAO) and SrTiO3_3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is in the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state, and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.Comment: 6 Pages 4 figure

    Superconductivity and Frozen Electronic States at the (111) LaAlO3_3/SrTiO3_3 Interface

    Full text link
    In spite of Anderson's theorem, disorder is known to affect superconductivity in conventional s-wave superconductors. In most superconductors, the degree of disorder is fixed during sample preparation. Here we report measurements of the superconducting properties of the two-dimensional gas that forms at the interface between LaAlO3_3 (LAO) and SrTiO3_3 (STO) in the (111) crystal orientation, a system that permits \emph{in situ} tuning of carrier density and disorder by means of a back gate voltage VgV_g. Like the (001) oriented LAO/STO interface, superconductivity at the (111) LAO/STO interface can be tuned by VgV_g. In contrast to the (001) interface, superconductivity in these (111) samples is anisotropic, being different along different interface crystal directions, consistent with the strong anisotropy already observed other transport properties at the (111) LAO/STO interface. In addition, we find that the (111) interface samples "remember" the backgate voltage VFV_F at which they are cooled at temperatures near the superconducting transition temperature TcT_c, even if VgV_g is subsequently changed at lower temperatures. The low energy scale and other characteristics of this memory effect (<1<1 K) distinguish it from charge-trapping effects previously observed in (001) interface samples.Comment: 6 pages, 5 Figure
    corecore