4,288 research outputs found

    Fantasy and Reality

    Get PDF
    Panel: Fantasy & Realit

    Writing Sample

    Get PDF
    Includes Spring Letter and Snowy Road

    Band Gap Closing in a Synthetic Hall Tube of Neutral Fermions

    Get PDF
    We report the experimental realization of a synthetic three-leg Hall tube with ultracold fermionic atoms in a one-dimensional optical lattice. The legs of the synthetic tube are composed of three hyperfine spin states of the atoms, and the cyclic inter-leg links are generated by two-photon Raman transitions between the spin states, resulting in a uniform gauge flux Ï•\phi penetrating each side plaquette of the tube. Using quench dynamics, we investigate the band structure of the Hall tube system for a commensurate flux Ï•=2Ï€/3\phi=2\pi/3. Momentum-resolved analysis of the quench dynamics reveals that a critical point of band gap closing as one of the inter-leg coupling strengths is varied, which is consistent with a topological phase transition predicted for the Hall tube system.Comment: 8 pages, 8 figure

    Double resonance of Raman transitions in a degenerate Fermi gas

    Get PDF
    We measure momentum-resolved Raman spectra of a spin-polarized degenerate Fermi gas of 173^{173}Yb atoms for a wide range of magnetic fields, where the atoms are irradiated by a pair of counterpropagating Raman laser beams as in the conventional spin-orbit coupling scheme. Double resonance of first- and second-order Raman transitions occurs at a certain magnetic field and the spectrum exhibits a doublet splitting for high laser intensities. The measured spectral splitting is quantitatively accounted for by the Autler-Townes effect. We show that our measurement results are consistent with the spinful band structure of a Fermi gas in the spatially oscillating effective magnetic field generated by the Raman laser fields.Comment: 7 pages, 6 figure

    Charge density functional plus UU calculation of lacunar spinel GaM4_4Se8_8 (M = Nb, Mo, Ta, and W)

    Full text link
    Charge density functional plus UU calculations are carried out to examine the validity of molecular JeffJ_\text{eff}=1/2 and 3/2 state in lacunar spinel GaM4_4X8_8 (M = Nb, Mo, Ta, and W). With LDA (spin-unpolarized local density approximation)+U+U, which has recently been suggested as the more desirable choice than LSDA (local spin density approximation)+U+U, we examine the band structure in comparison with the previous prediction based on the spin-polarized version of functional and with the prototypical JeffJ_\text{eff}=1/2 material Sr2_2IrO4_4. It is found that the previously suggested JeffJ_\text{eff}=1/2 and 3/2 band characters remain valid still in LDA+U+U calculations while the use of charge-only density causes some minor differences. Our result provides the further support for the novel molecular JeffJ_\text{eff} state in this series of materials, which can hopefully motivate the future exploration toward its verification and the further search for new functionalities

    Creutz ladder in a resonantly shaken 1D optical lattice

    Get PDF
    We report the experimental realization of a Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg links are generated via two-photon resonant coupling between the orbitals by periodic lattice shaking. The characteristic pseudo-spin winding structure in the energy bands of the ladder system is demonstrated using momentum-resolved Ramsey-type interferometric measurements. We discuss a two-tone driving method to extend the inter-leg link control and propose a topological charge pumping scheme for the Creutz ladder system. ©2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaf

    Realization of a cross-linked chiral ladder with neutral fermions in an optical lattice by orbital-momentum coupling

    Get PDF
    We report the experimental realization of a cross-linked chiral ladder with ultracold fermionic atoms in an optical lattice. In the ladder, the legs are formed by the orbital states of the optical lattice and the complex inter-leg links are generated by the orbital-changing Raman transitions that are driven by a moving lattice potential superimposed onto the optical lattice. The effective magnetic flux per ladder plaquette is tuned by the spatial periodicity of the moving lattice, and the chiral currents are observed from the asymmetric momentum distributions of the orbitals. The effect of the complex cross links is demonstrated in quench dynamics by measuring the momentum dependence of the inter-orbital coupling strength. We discuss the topological phase transition of the chiral ladder system for the variations of the complex cross links.Comment: 8 pages, 8 figure
    • …
    corecore