320 research outputs found

    Nonlinear response of continuous girder bridges with isolation bearings under bi-directional ground motions

    Get PDF
    The isolation seismic technology has been developed during the past three decades, but it is a current focus in bridge seismic research and practice. In order to investigate the nonlinear seismic responses of isolated bridges and evaluate the effects of seismic isolation on the peak response of the bridges with lead rubber bearings (LRB) under bi-directional horizontal earthquake excitation, an analytical method of nonlinear seismic responses of continuous multi-span girder bridges with LRB and its solving method are presented considering the interaction between the restoring forces of the bearings. Shaking table test of 1/10 the scaled model of two-span girder isolated bridge with LRB have been conducted to verify effectiveness of the LRB as a seismic isolation device and peak response of isolated bridges. Experimental results well agreed with the results obtained from analytical results of peak displacement and acceleration of deck, displacement and force-displacement hysteresis loops of isolators. It is verified that analytical method given this paper is right and effective when analyzing nonlinear earthquake response of continuous girder isolated bridges with LRB. Moreover, the bi-directional coupled interaction of the restoring forces of LRB should be taken into account, which has considerable effects on the peak seismic responses of the isolated bridge

    Multiple shaking tables tests of seismic pounding effect of reinforced concrete bridge model

    Get PDF
    In order to investigate the longitudinal pounding effect of highway bridges with high-piers under strong ground motions, multiple shaking tables tests of a 1/10 scaled continuous rigid frame and simply-supported girder bridge with high-piers were carried out. The pounding responses of the bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitation were studied, and the effectiveness of the dampers and isolation bearings for reducing the seismic pounding effect were analyzed and discussed. Test results indicate that the traveling wave effect is the important factor in seismic pounding response of high pier bridges. Additional dampers can mitigate the pounding effect apparently and play a role in reducing seismic response for bridge superstructures. Compared with conventional rubber bearing (RB), the decreases in the relative displacement and the pounding force between adjacent girders were 30 % and 55 % with lead rubber bearing (LRB) in this experiment, respectively. Seismic pounding effect of bridge superstructures depends on different structural dynamic properties of adjacent girders and characteristics of ground motions

    Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect

    Get PDF
    In order to effectively simulate the nonlinear hysteresis behavior of reinforced concrete (RC) bridge piers under strong earthquake excitation, an improved nonlinear hysteresis model for RC bridge piers was developed and its controlling parameters were determined considering stiffness and strength degradation and pinching effect based on classical Bouc-Wen model. The improved model can be carried out to predict the nonlinear hysteresis behavior of RC bridge piers under various failure modes using MATLAB/ Simulink program. Cyclic tests of different failure mode bridge column specimens were performed under constant axial load with lateral bending. The results did show that force-displacement relationship curves of bridge column specimens derived from theoretical analysis agree well with experimental results. The nonlinear hysteresis behavior of bridge column specimen was simulated under 2008 Wenchuan earthquake excitation and its failure modes were identical with real earthquake damage of bridge column. The improved analytical models in the paper were applied to accurately predicting the nonlinear hysteresis behavior of RC bridge columns with strength and stiffness degradations and the pinching effect subjected to strong earthquake motion

    GSK3β Is Involved in JNK2-Mediated β-Catenin Inhibition

    Get PDF
    We have recently reported that mitogen-activated protein kinase (MAPK) JNK1 downregulates beta-catenin signaling and plays a critical role in regulating intestinal homeostasis and in suppressing tumor formation. This study was designed to determine whether JNK2, another MAPK, has similar and/or different functions in the regulation of beta-catenin signaling.We used an in vitro system with manipulation of JNK2 and beta-catenin expression and found that activated JNK2 increased GSK3beta activity and inhibited beta-catenin expression and transcriptional activity. However, JNK2-mediated downregulation of beta-catenin was blocked by the proteasome inhibitor MG132 and GSK3beta inhibitor lithium chloride. Moreover, targeted mutations at GSK3beta phosphorylation sites (Ser33 and Ser37) of beta-catenin abrogated JNK2-mediated suppression of beta-catenin. In vivo studies further revealed that JNK2 deficiency led to upregulation of beta-catenin and increase of GSK3-beta phosphorylation in JNK2-/- mouse intestinal epithelial cells. Additionally, physical interaction and co-localization among JNK2, beta-catenin and GSK3beta were observed by immunoprecipitation, mammalian two-hybridization assay and confocal microscopy, respectively.In general, our data suggested that JNK2, like JNK1, interacts with and suppresses beta-catenin signaling in vitro and in vivo, in which GSK3beta plays a key role, although previous studies have shown distinct functions of JNK1 and JNK2. Our study also provides a novel insight into the crosstalk between Wnt/beta-catenin and MAPK JNKs signaling

    Nonlinear response of continuous girder bridges with isolation bearings under bi-directional ground motions

    Get PDF
    The isolation seismic technology has been developed during the past three decades, but it is a current focus in bridge seismic research and practice. In order to investigate the nonlinear seismic responses of isolated bridges and evaluate the effects of seismic isolation on the peak response of the bridges with lead rubber bearings (LRB) under bi-directional horizontal earthquake excitation, an analytical method of nonlinear seismic responses of continuous multi-span girder bridges with LRB and its solving method are presented considering the interaction between the restoring forces of the bearings. Shaking table test of 1/10 the scaled model of two-span girder isolated bridge with LRB have been conducted to verify effectiveness of the LRB as a seismic isolation device and peak response of isolated bridges. Experimental results well agreed with the results obtained from analytical results of peak displacement and acceleration of deck, displacement and force-displacement hysteresis loops of isolators. It is verified that analytical method given this paper is right and effective when analyzing nonlinear earthquake response of continuous girder isolated bridges with LRB. Moreover, the bi-directional coupled interaction of the restoring forces of LRB should be taken into account, which has considerable effects on the peak seismic responses of the isolated bridge

    Nonlinear response of continuous girder bridges with isolation bearings under bi-directional ground motions

    Get PDF
    The isolation seismic technology has been developed during the past three decades, but it is a current focus in bridge seismic research and practice. In order to investigate the nonlinear seismic responses of isolated bridges and evaluate the effects of seismic isolation on the peak response of the bridges with lead rubber bearings (LRB) under bi-directional horizontal earthquake excitation, an analytical method of nonlinear seismic responses of continuous multi-span girder bridges with LRB and its solving method are presented considering the interaction between the restoring forces of the bearings. Shaking table test of 1/10 the scaled model of two-span girder isolated bridge with LRB have been conducted to verify effectiveness of the LRB as a seismic isolation device and peak response of isolated bridges. Experimental results well agreed with the results obtained from analytical results of peak displacement and acceleration of deck, displacement and force-displacement hysteresis loops of isolators. It is verified that analytical method given this paper is right and effective when analyzing nonlinear earthquake response of continuous girder isolated bridges with LRB. Moreover, the bi-directional coupled interaction of the restoring forces of LRB should be taken into account, which has considerable effects on the peak seismic responses of the isolated bridge

    Polyketides From the Endophytic Fungus Cladosporium sp. Isolated From the Mangrove Plant Excoecaria agallocha

    Get PDF
    Five new polyketides (2–6) and ten known compounds (1 and 7–15) were obtained from the fermentation products of the endophytic fungus Cladosporium sp. OUCMDZ-302 with the mangrove plant, Excoecaria agallocha (Euphorbiaceae). The new structures of 2–6 were established on the basis of ECD, specific rotation and spectroscopic data as well as the chemical calculation. Compound 7 showed cytotoxicity against H1975 cell line with an IC50 value of 10.0 μM. Compounds 4 and 8–10 showed radical scavenging activity against DPPH with the IC50 values of 2.65, 0.24, 5.66, and 6.67 μM, respectively. In addition, the absolute configuration of compound 1 was solidly determined by X-ray and sugar analysis of the acidic hydrolysates for the first time as well as those of compounds 8–10 in this paper

    Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect

    Get PDF
    In order to effectively simulate the nonlinear hysteresis behavior of reinforced concrete (RC) bridge piers under strong earthquake excitation, an improved nonlinear hysteresis model for RC bridge piers was developed and its controlling parameters were determined considering stiffness and strength degradation and pinching effect based on classical Bouc-Wen model. The improved model can be carried out to predict the nonlinear hysteresis behavior of RC bridge piers under various failure modes using MATLAB/ Simulink program. Cyclic tests of different failure mode bridge column specimens were performed under constant axial load with lateral bending. The results did show that force-displacement relationship curves of bridge column specimens derived from theoretical analysis agree well with experimental results. The nonlinear hysteresis behavior of bridge column specimen was simulated under 2008 Wenchuan earthquake excitation and its failure modes were identical with real earthquake damage of bridge column. The improved analytical models in the paper were applied to accurately predicting the nonlinear hysteresis behavior of RC bridge columns with strength and stiffness degradations and the pinching effect subjected to strong earthquake motion

    Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect

    Get PDF
    In order to effectively simulate the nonlinear hysteresis behavior of reinforced concrete (RC) bridge piers under strong earthquake excitation, an improved nonlinear hysteresis model for RC bridge piers was developed and its controlling parameters were determined considering stiffness and strength degradation and pinching effect based on classical Bouc-Wen model. The improved model can be carried out to predict the nonlinear hysteresis behavior of RC bridge piers under various failure modes using MATLAB/ Simulink program. Cyclic tests of different failure mode bridge column specimens were performed under constant axial load with lateral bending. The results did show that force-displacement relationship curves of bridge column specimens derived from theoretical analysis agree well with experimental results. The nonlinear hysteresis behavior of bridge column specimen was simulated under 2008 Wenchuan earthquake excitation and its failure modes were identical with real earthquake damage of bridge column. The improved analytical models in the paper were applied to accurately predicting the nonlinear hysteresis behavior of RC bridge columns with strength and stiffness degradations and the pinching effect subjected to strong earthquake motion
    • …
    corecore