404 research outputs found

    Virtual image sensors to track human activity in a smart house

    Get PDF
    With the advancement of computer technology, demand for more accurate and intelligent monitoring systems has also risen. The use of computer vision and video analysis range from industrial inspection to surveillance. Object detection and segmentation are the first and fundamental task in the analysis of dynamic scenes. Traditionally, this detection and segmentation are typically done through temporal differencing or statistical modelling methods. One of the most widely used background modeling and segmentation algorithms is the Mixture of Gaussians method developed by Stauffer and Grimson (1999). During the past decade many such algorithms have been developed ranging from parametric to non-parametric algorithms. Many of them utilise pixel intensities to model the background, but some use texture properties such as Local Binary Patterns. These algorithms function quite well under normal environmental conditions and each has its own set of advantages and short comings. However, there are two drawbacks in common. The first is that of the stationary object problem; when moving objects become stationary, they get merged into the background. The second problem is that of light changes; when rapid illumination changes occur in the environment, these background modelling algorithms produce large areas of false positives.These algorithms are capable of adapting to the change, however, the quality of the segmentation is very poor during the adaptation phase. In this thesis, a framework to suppress these false positives is introduced. Image properties such as edges and textures are utilised to reduce the amount of false positives during adaptation phase. The framework is built on the idea of sequential pattern recognition. In any background modelling algorithm, the importance of multiple image features as well as different spatial scales cannot be overlooked. Failure to focus attention on these two factors will result in difficulty to detect and reduce false alarms caused by rapid light change and other conditions. The use of edge features in false alarm suppression is also explored. Edges are somewhat more resistant to environmental changes in video scenes. The assumption here is that regardless of environmental changes, such as that of illumination change, the edges of the objects should remain the same. The edge based approach is tested on several videos containing rapid light changes and shows promising results. Texture is then used to analyse video images and remove false alarm regions. Texture gradient approach and Laws Texture Energy Measures are used to find and remove false positives. It is found that Laws Texture Energy Measure performs better than the gradient approach. The results of using edges, texture and different combination of the two in false positive suppression are also presented in this work. This false positive suppression framework is applied to a smart house senario that uses cameras to model ”virtual sensors” to detect interactions of occupants with devices. Results show the accuracy of virtual sensors compared with the ground truth is improved

    Advanced Car Security System Using GSM

    Get PDF
    Abstract- This system proposes the design and construction of an advanced car security system using GSM. It uses the GSM mobile communication networks to transmit alarm signal and control instruction. The control and communication between the user and the proposed system are achieved through a short message services (SMS) protocol available in the mobile phone. If the car door is illegally opened or the car is vibrated, an alarm will be activated and it send SMS message to the owner’s mobile phone immediately and automatically. The user could easily protect and control their car anywhere at any time. The proposed system consists both hardware and software parts. The hardware components include vibration sensors, a PIC microcontroller, a GSM modem, LCD and buzzer. The software part includes a program controller interface. PIC MikroC programming language is used for this control system. The control system is based on the PIC16F877A microcontroller and AT COMMAND

    A model of composite objects for information mesh

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 87-88).by Felix Tun-Han Lo.M.Eng

    Trajectory Optimization and Phase-Shift Design in IRS Assisted UAV Network for High Speed Trains

    Full text link
    The recent trend towards the high-speed transportation system has spurred the development of high-speed trains (HSTs). However, enabling HST users with seamless wireless connectivity using the roadside units (RSUs) is extremely challenging, mostly due to the lack of line of sight link. To address this issue, we propose a novel framework that uses intelligent reflecting surfaces (IRS)-enabled unmanned aerial vehicles (UAVs) to provide line of sight communication to HST users. First, we formulate the optimization problem where the objective is to maximize the minimum achievable rate of HSTs by jointly optimizing the trajectory of UAV and the phase-shift of IRS. Due to the non-convex nature of the formulated problem, it is decomposed into two subproblems: IRS phase-shift problem and UAV trajectory optimization problem. Next, a Binary Integer Linear Programming (BILP) and a Soft Actor-Critic (SAC) are constructed in order to solve our decomposed problems. Finally, comprehensive numerical results are provided in order to show the effectiveness of our proposed framework.Comment: This paper has been submitted to IEEE Wireless Communications Letter

    Swin Transformer-Based Dynamic Semantic Communication for Multi-User with Different Computing Capacity

    Full text link
    Semantic communication has gained significant attention from researchers as a promising technique to replace conventional communication in the next generation of communication systems, primarily due to its ability to reduce communication costs. However, little literature has studied its effectiveness in multi-user scenarios, particularly when there are variations in the model architectures used by users and their computing capacities. To address this issue, we explore a semantic communication system that caters to multiple users with different model architectures by using a multi-purpose transmitter at the base station (BS). Specifically, the BS in the proposed framework employs semantic and channel encoders to encode the image for transmission, while the receiver utilizes its local channel and semantic decoder to reconstruct the original image. Our joint source-channel encoder at the BS can effectively extract and compress semantic features for specific users by considering the signal-to-noise ratio (SNR) and computing capacity of the user. Based on the network status, the joint source-channel encoder at the BS can adaptively adjust the length of the transmitted signal. A longer signal ensures more information for high-quality image reconstruction for the user, while a shorter signal helps avoid network congestion. In addition, we propose a hybrid loss function for training, which enhances the perceptual details of reconstructed images. Finally, we conduct a series of extensive evaluations and ablation studies to validate the effectiveness of the proposed system.Comment: 14 pages, 10 figure

    An Efficient Federated Learning Framework for Training Semantic Communication System

    Get PDF
    Semantic communication has emerged as a pillar forthe next generation of communication systems due to its capabilities in alleviating data redundancy. Most semantic communication systems are built upon advanced deep learning models whosetraining performance heavily relies on data availability. Existingstudies often make unrealistic assumptions of a readily accessibledata source, where in practice, data is mainly created on the clientside. Due to privacy and security concerns, the transmission ofdata is restricted, which is necessary for conventional centralizedtraining schemes. To address this challenge, we explore semanticcommunication in a federated learning (FL) setting that utilizesclient data without leaking privacy. Additionally, we designour system to tackle the communication overhead by reducingthe quantity of information delivered in each global round.In this way, we can save significant bandwidth for resourcelimited devices and reduce overall network traffic. Finally, weintroduce a mechanism to aggregate the global model fromclients, called FedLol. Extensive simulation results demonstratethe effectiveness of our proposed technique compared to baselinemethods

    Joint Trajectory and Resource Optimization of MEC-Assisted UAVs in Sub-THz Networks: A Resources-based Multi-Agent Proximal Policy Optimization DRL with Attention Mechanism

    Full text link
    THz band communication technology will be used in the 6G networks to enable high-speed and high-capacity data service demands. However, THz-communication losses arise owing to limitations, i.e., molecular absorption, rain attenuation, and coverage range. Furthermore, to maintain steady THz-communications and overcome coverage distances in rural and suburban regions, the required number of BSs is very high. Consequently, a new communication platform that enables aerial communication services is required. Furthermore, the airborne platform supports LoS communications rather than NLoS communications, which helps overcome these losses. Therefore, in this work, we investigate the deployment and resource optimization for MEC-enabled UAVs, which can provide THz-based communications in remote regions. To this end, we formulate an optimization problem to minimize the sum of the energy consumption of both MEC-UAV and MUs and the delay incurred by MUs under the given task information. The formulated problem is a MINLP problem, which is NP-hard. We decompose the main problem into two subproblems to address the formulated problem. We solve the first subproblem with a standard optimization solver, i.e., CVXPY, due to its convex nature. To solve the second subproblem, we design a RMAPPO DRL algorithm with an attention mechanism. The considered attention mechanism is utilized for encoding a diverse number of observations. This is designed by the network coordinator to provide a differentiated fit reward to each agent in the network. The simulation results show that the proposed algorithm outperforms the benchmark and yields a network utility which is 2.22%2.22\%, 15.55%15.55\%, and 17.77%17.77\% more than the benchmarks.Comment: 13 pages, 12 figure
    • …
    corecore