6,636 research outputs found
Exoplanet Catalogues
One of the most exciting developments in the field of exoplanets has been the
progression from 'stamp-collecting' to demography, from discovery to
characterisation, from exoplanets to comparative exoplanetology. There is an
exhilaration when a prediction is confirmed, a trend is observed, or a new
population appears. This transition has been driven by the rise in the sheer
number of known exoplanets, which has been rising exponentially for two decades
(Mamajek 2016). However, the careful collection, scrutiny and organisation of
these exoplanets is necessary for drawing robust, scientific conclusions that
are sensitive to the biases and caveats that have gone into their discovery.
The purpose of this chapter is to discuss and demonstrate important
considerations to keep in mind when examining or constructing a catalogue of
exoplanets. First, we introduce the value of exoplanetary catalogues. There are
a handful of large, online databases that aggregate the available exoplanet
literature and render it digestible and navigable - an ever more complex task
with the growing number and diversity of exoplanet discoveries. We compare and
contrast three of the most up-to-date general catalogues, including the data
and tools that are available. We then describe exoplanet catalogues that were
constructed to address specific science questions or exoplanet discovery space.
Although we do not attempt to list or summarise all the published lists of
exoplanets in the literature in this chapter, we explore the case study of the
NASA Kepler mission planet catalogues in some detail. Finally, we lay out some
of the best practices to adopt when constructing or utilising an exoplanet
catalogue.Comment: 14 pages, 6 figures. Invited review chapter, to appear in "Handbook
of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, section editor N.
Batalh
Things change: Womenâs and menâs marital disruption dynamics in Italy during a time of social transformations, 1970-2003
We study womenâs and menâs marital disruption in Italy between 1970 and 2003. By applying an event-history analysis to the 2003 Italian variant of the Generations and Gender Survey we found that the spread of marital disruption started among middle-highly educated women. Then in recent years it appears that less educated women have also been able to dissolve their unhappy unions. Overall we can see the beginning of a reversed educational gradient from positive to negative. In contrast the trend in menâs marital disruption risk appears as a change over time common to all educational groups, although with persisting educational differentials.determinants, educational differences, event history analysis, gender difference, Italy, marital disruption
Comment on Higgs Inflation and Naturalness
We rebut the recent claim (arXiv:0912.5463) that Einstein-frame scattering in
the Higgs inflation model is unitary above the cut-off energy Lambda ~ Mp/xi.
We show explicitly how unitarity problems arise in both the Einstein and Jordan
frames of the theory. In a covariant gauge they arise from non-minimal Higgs
self-couplings, which cannot be removed by field redefinitions because the
target space is not flat. In unitary gauge, where there is only a single scalar
which can be redefined to achieve canonical kinetic terms, the unitarity
problems arise through non-minimal Higgs-gauge couplings.Comment: 5 pages, 1 figure V3: Journal Versio
Collective Quartics from Simple Groups
This article classifies Little Higgs models that have collective quartic
couplings. There are two classes of collective quartics: Special Cosets and
Special Quartics. After taking into account dangerous singlets, the smallest
Special Coset models are SU(5)/SO(5) and SU(6)/Sp(6). The smallest Special
Quartic model is SU(5)/SU(3) x SU(2) x U(1) and has not previously been
considered as a candidate Little Higgs model.Comment: 22 pages, 2 figure
Muon to electron conversion in the Littlest Higgs model with T-parity
Little Higgs models provide a natural explanation of the little hierarchy
between the electroweak scale and a few TeV scale, where new physics is
expected. Under the same inspiring naturalness arguments, this work completes a
previous study on lepton flavor-changing processes in the Littlest Higgs model
with T-parity exploring the channel that will eventually turn out to be the
most sensitive, \mu-e conversion in nuclei. All one-loop contributions are
carefully taken into account, results for the most relevant nuclei are provided
and a discussion of the influence of the quark mixing is included. The results
for the Ti nucleus are in good agreement with earlier work by Blanke et al.,
where a degenerate mirror quark sector was assumed. The conclusion is that,
although this particular model reduces the tension with electroweak precision
tests, if the restrictions on the parameter space derived from lepton flavor
violation are taken seriously, the degree of fine tuning necessary to meet
these constraints also disfavors this model.Comment: 26 pages, 7 figures, 4 tables; discussion improved, results
unchanged, one reference added, version to appear in JHE
The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa)
Background
In the present study, the effects of ultrasound pretreatment parameters including irradiation time and power on the quantity of the extracted phenolic compounds quantity as well as on some selected physicochemical properties of the extracted oils including oil extraction efficiency, acidity and peroxide values, color, and refractive index of the extracted oil of black cumin seeds with the use of cold press have been studied.
Methods
For each parameter, three different levels (30, 60, and 90 W) for the ultrasound power and (30, 45, and 60 min) and for the ultrasound irradiation time were studied. Each experiment was performed in three replications.
Results
The achieved results revealed that, with enhancements in the applied ultrasound power, the oil extraction efficiency, acidity value, total phenolic content, peroxide value, and color parameters increased significantly (P 0.05).
Conclusions
In summary, it could be mentioned that the application of ultrasound pretreatment in the oil extraction might improve the oil extraction efficiency, the extracted oilâs quality, and the extracted phenolic compounds content.info:eu-repo/semantics/publishedVersio
T-parity, its problems and their solution
We point out a basic difficulty in the construction of little-Higgs models
with T-parity which is overlooked by large part of the present literature.
Almost all models proposed so far fail to achieve their goal: they either
suffer from sizable electroweak corrections or from a breakdown of collective
breaking. We provide a model building recipe to bypass the above problem and
apply it to build the simplest T-invariant extension of the Littlest Higgs. Our
model predicts additional T-odd pseudo-Goldstone bosons with weak scale masses.Comment: 25 pages, 2 appendice
Radiative Electroweak Symmetry Breaking in a Little Higgs Model
We present a new Little Higgs model, motivated by the deconstruction of a
five-dimensional gauge-Higgs model. The approximate global symmetry is
, breaking to , with a gauged subgroup of
, breaking to . Radiative corrections produce an additional small vacuum misalignment,
breaking the electroweak symmetry down to . Novel features of this
model are: the only un-eaten pseudo-Goldstone boson in the effective theory is
the Higgs boson; the model contains a custodial symmetry, which ensures that
at tree-level; and the potential for the Higgs boson is generated
entirely through one-loop radiative corrections. A small negative mass-squared
in the Higgs potential is obtained by a cancellation between the contribution
of two heavy partners of the top quark, which is readily achieved over much of
the parameter space. We can then obtain both a vacuum expectation value of
GeV and a light Higgs boson mass, which is strongly correlated with the
masses of the two heavy top quark partners. For a scale of the global symmetry
breaking of TeV and using a single cutoff for the fermion loops, the
Higgs boson mass satisfies 120 GeV GeV over much of
the range of parameter space. For raised to 10 TeV, these values increase
by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise the
predicted values of the Higgs boson mass, but the model still favors
GeV.Comment: 32 pages, 10 figures, JHEP style. Version accepted for publication in
JHEP. Includes additional discussion of sensitivity to UV effects and
fine-tuning, revised Fig. 9, added appendix and additional references
Electroweak Symmetry Breaking in the DSSM
We study the theoretical and phenomenological consequences of modifying the
Kahler potential of the MSSM two Higgs doublet sector. Such modifications
naturally arise when the Higgs sector mixes with a quasi-hidden conformal
sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric
Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling
dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field
space due to the presence of quasi-hidden sector states which get their mass
from the Higgs vevs. The presence of these extra states leads to the fact that
even as Delta approaches 1, the DSSM does not reduce to the MSSM. In
particular, the Higgs can naturally be heavier than the W- and Z-bosons.
Perturbative gauge coupling unification, a large top quark Yukawa, and
consistency with precision electroweak can all be maintained for Delta close to
unity. Moreover, such values of Delta can naturally be obtained in
string-motivated constructions. The quasi-hidden sector generically contains
states charged under SU(5)_GUT as well as gauge singlets, leading to a rich,
albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte
Top Partner Discovery in the channel at the LHC
In this paper we study the discovery potential of the LHC run II for heavy
vector-like top quarks in the decay channel to a top and a boson. Despite
the usually smaller branching ratio compared to charged-current decays, this
channel is rather clean and allows for a complete mass reconstruction of the
heavy top. The latter is achieved in the leptonic decay channel of the
boson and in the fully hadronic top channel using boosted jet and jet
substructure techniques. To be as model-independent as possible, a simplified
model approach with only two free parameters has been applied. The results are
presented in terms of parameter space regions for evidence or
discovery for such new states in that channel.Comment: 24 pages, 8 figures, version 2 updated to JHEP 01 (2015) 08
- âŠ