67,265 research outputs found

    Local heat/mass transfer and pressure drop in a two-pass rib-roughened channel for turbine airfoil cooling

    Get PDF
    The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    Approximate input physics for stellar modelling

    Get PDF
    We present a simple and efficient, yet reasonably accurate, equation of state, which at the moderately low temperatures and high densities found in the interiors of stars less massive than the Sun is substantially more accurate than its predecessor by Eggleton, Faulkner & Flannery. Along with the most recently available values in tabular form of opacities, neutrino loss rates, and nuclear reaction rates for a selection of the most important reactions, this provides a convenient package of input physics for stellar modelling. We briefly discuss a few results obtained with the updated stellar evolution code.Comment: uuencoded compressed postscript. The preprint are also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Spin-triplet s-wave local pairing induced by Hund's rule coupling

    Full text link
    We show within the dynamical mean field theory that local multiplet interactions such as Hund's rule coupling produce local pairing superconductivity in the strongly correlated regime. Spin-triplet superconductivity driven by the Hund's rule coupling emerges from the pairing mediated by local fluctuations in pair exchange. In contrast to the conventional spin-triplet theories, the local orbital degrees of freedom has the anti-symmetric part of the exchange symmetry, leaving the spatial part as fully gapped and symmetric s-wave.Comment: 9 pages, 7 figure

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Stokes Parameters as a Minkowskian Four-vector

    Get PDF
    It is noted that the Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. It is shown that the four independent Stokes parameters form a Minkowskian four-vector, just like the energy-momentum four-vector in special relativity. The optical filters are represented by four-by-four Lorentz-transformation matrices. This four-by-four formalism can deal with partial coherence described by the Stokes parameters. A four-by-four matrix formulation is given for decoherence effects on the Stokes parameters, and a possible experiment is proposed. It is shown also that this Lorentz-group formalism leads to optical filters with a symmetry property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.

    Indications of a Large Fraction of Spectroscopic Binaries Among Nuclei of Planetary Nebulae

    Full text link
    Previous work indicates that about 10% of planetary-nebula nuclei (PNNi) are photometrically variable short-period binaries with periods of hours to a few days. These systems have most likely descended from common-envelope (CE) interactions in initially much wider binaries. Population-synthesis studies suggest that these very close pairs could be the short-period tail of a much larger post-CE binary population with periods of up to a few months. We have initiated a radial-velocity (RV) survey of PNNi with the WIYN 3.5-m telescope and Hydra spectrograph, which is aimed at discovering these intermediate-period binaries. We present initial results showing that 10 out of 11 well-observed PNNi have variable RVs, suggesting that a significant binary population may be present. However, further observations are required because we have as yet been unable to fit our sparse measurements with definite orbital periods, and because some of the RV variability might be due to variations in the stellar winds of some of our PNNi.Comment: 11 pages, 1 table, no figures. Accepted by the Astrophysical Journal Letter

    Induced Magnetic Ordering by Proton Irradiation in Graphite

    Full text link
    We provide evidence that proton irradiation of energy 2.25 MeV on highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism. Measurements performed with a superconducting quantum interferometer device (SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering is stable at room temperature.Comment: 3 Figure

    Feynman's Decoherence

    Get PDF
    Gell-Mann's quarks are coherent particles confined within a hadron at rest, but Feynman's partons are incoherent particles which constitute a hadron moving with a velocity close to that of light. It is widely believed that the quark model and the parton model are two different manifestations of the same covariant entity. If this is the case, the question arises whether the Lorentz boost destroys coherence. It is pointed out that this is not the case, and it is possible to resolve this puzzle without inventing new physics. It is shown that this decoherence is due to the measurement processes which are less than complete.Comment: RevTex 15 pages including 6 figs, presented at the 9th Int'l Conference on Quantum Optics (Raubichi, Belarus, May 2002), to be published in the proceeding
    • …
    corecore