48,969 research outputs found
Imaginary-time formulation of steady-state nonequilibrium in quantum dot models
We examine the recently proposed imaginary-time formulation for strongly
correlated steady-state nonequilibrium for its range of validity and discuss
significant improvements in the analytic continuation of the Matsubara voltage
as well as the fermionic Matsubara frequency. The discretization error in the
conventional Hirsch-Fye algorithm has been compensated in the Fourier
transformation with reliable small frequency behavior of self-energy. Here we
give detailed discussions for generalized spectral representation ansatz by
including high order vertex corrections and its numerical analytic continuation
procedures. The differential conductance calculations agree accurately with
existing data from other nonequilibrium transport theories. It is verified
that, at finite source-drain voltage, the Kondo resonance is destroyed at bias
comparable to the Kondo temperature. Calculated coefficients in the scaling
relation of the zero bias anomaly fall within the range of experimental
estimates.Comment: 16 pages, 10 figures, Comparison to other theories adde
Imaginary-time formulation of steady-state nonequilibrium: application to strongly correlated transport
We extend the imaginary-time formulation of the equilibrium quantum many-body
theory to steady-state nonequilibrium with an application to strongly
correlated transport. By introducing Matsubara voltage, we keep the finite
chemical potential shifts in the Fermi-Dirac function, in agreement with the
Keldysh formulation. The formulation is applied to strongly correlated
transport in the Kondo regime using the quantum Monte Carlo method.Comment: 5 pages 3 figure
Skyrmion Generation by Current
Skyrmions, once a hypothesized field-theoretical object believed to describe
the nature of elementary particles, became common sightings in recent years
among several non-centrosymmetric metallic ferromagnets. For more practical
applications of Skyrmionic matter as carriers of information, thus realizing
the prospect of "Skyrmionics", it is necessary to have the means to create and
manipulate Skyrmions individually. We show through extensive simulation of the
Landau-Lifshitz-Gilbert equation that a circulating current imparted to the
metallic chiral ferromagnetic system can create isolated Skyrmionic spin
texture without the aid of external magnetic field.Comment: 8 pages, 5 figures, submitted to PR
Attenuation of transcriptional bursting in mRNA transport
Due to the stochastic nature of biochemical processes, the copy number of any
given type of molecule inside a living cell often exhibits large temporal
fluctuations. Here, we develop analytic methods to investigate how the noise
arising from a bursting input is reshaped by a transport reaction which is
either linear or of the Michaelis-Menten type. A slow transport rate smoothes
out fluctuations at the output end and minimizes the impact of bursting on the
downstream cellular activities. In the context of gene expression in eukaryotic
cells, our results indicate that transcriptional bursting can be substantially
attenuated by the transport of mRNA from nucleus to cytoplasm. Saturation of
the transport mediators or nuclear pores contributes further to the noise
reduction. We suggest that the mRNA transport should be taken into account in
the interpretation of relevant experimental data on transcriptional bursting.Comment: 18 pages, 3 figure
Mapping of strongly correlated steady-state nonequilibrium to an effective equilibrium
By mapping steady-state nonequilibrium to an effective equilibrium, we
formulate nonequilibrium problems within an equilibrium picture where we can
apply existing equilibrium many-body techniques to steady-state electron
transport problems. We study the analytic properties of many-body scattering
states, reduce the boundary condition operator in a simple form and prove that
this mapping is equivalent to the correct linear-response theory. In an example
of infinite-U Anderson impurity model, we approximately solve for the
scattering state creation operators, based on which we derive the bias operator
Y to construct the nonequilibrium ensemble in the form of the Boltzmann factor
exp(-beta(H-Y)). The resulting Hamiltonian is solved by the non-crossing
approximation. We obtain the Kondo anomaly conductance at zero bias, inelastic
transport via the charge excitation on the quantum dot and significant
inelastic current background over a wide range of bias. Finally, we propose a
self-consistent algorithm of mapping general steady-state nonequilibrium.Comment: 15 pages, 9 figure
Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics.
The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria
Quantum simulation of manybody effects in steady-state nonequilibrium: electron-phonon coupled quantum dots
We develop a mapping of quantum steady-state nonequilibrium to an effective
equilibrium and solve the problem using a quantum simulation technique. A
systematic implementation of the nonequilibrium boundary condition in
steady-state is made in the electronic transport on quantum dot structures.
This formulation of quantum manybody problem in nonequilibrium enables the use
of existing numerical quantum manybody techniques. The algorithm coherently
demonstrates various transport behaviors from phonon-dephasing to I-V staircase
and phonon-assisted tunneling.Comment: 5 pages, 4 figure
Cosmological Constraints on Theories with Large Extra Dimensions
In theories with large extra dimensions, constraints from cosmology lead to
non-trivial lower bounds on the fundamental scale M_F, corresponding to upper
bounds on the radii of the compact extra dimensions. These constraints are
especially relevant to the case of two extra dimensions, since only if M_F is
10 TeV or less do deviations from the standard gravitational force law become
evident at distances accessible to planned sub-mm gravity experiments. By
examining the graviton decay contribution to the cosmic diffuse gamma
radiation, we derive, for the case of two extra dimensions, a conservative
bound M_F > 110 TeV, corresponding to r_2 < 5.1 times 10^-5 mm, well beyond the
reach of these experiments. We also consider the constraint coming from
graviton overclosure of the universe and derive an independent bound M_F > 6.5
h^(-1/2) TeV, or r_2 < .015 h mm.Comment: 10 pages, references adde
- …