93 research outputs found

    Understanding Students’ Cognitive and Affective Attitude and Attitudinal Structures Toward Physical Activity: A Person-Centered Approach

    Get PDF
    Objectives: The purpose of this study was to determine the proportions of students who were holding positive, negative, and neutral cognitive/affective attitude and different cognitive-affective attitudinal structures toward moderate-to-vigorous physical activity (MVPA) using a person-centered approach. Methods: A total of 3949 students participated in this study (1065 middle-school students, 784 high-school students, and 2100 college students). Results: A majority of students were holding positive cognitive (about 94%) and affective attitude (about 85%) toward MVPA. Most students (about 84%) held the Positive cognitive—Positive affective attitudinal structure toward MVPA. School level influenced the proportions of students who were holding different cognitive attitude status, affective attitude status, and cognitive-affective attitudinal structures; gender and body weight status did not significantly influence them. Conclusions: This study furthers our understandings on students’ attitude and attitudinal structures toward PA. It lays the foundation for the development of physical education curriculum or PA programs that aim at promoting students’ PA behavior through changing their PA attitude. Future studies are needed to examine the effects of different attitude statuses and attitudinal structures on PA behavior

    Attitude and Attitudinal Structures Toward Physical Education and Their Influences on Physical Activity Behavior

    Get PDF
    Objectives: The purpose of this study was to examine middle and high school students’ cognitive and affective attitude and their cognitive-affective attitudinal structures toward physical education (PE). The effects of cognitive and affective attitude and attitudinal structures on physical activity (PA) in PE and outside of school were also examined. Methods: 1773 Chinese middle and high-school students participated in this study. SEM, Chi-square test, ANOVAs, and Contingency tables were adopted to address the research questions. Results: The results showed that most students (\u3e90%) were holding positive cognitive and affective attitude toward PE. Students’ affective attitude significantly influences their PA in PE and outside of school. Most students were holding the positive cognitive-positive negative attitudinal structure toward PE. Conclusions: All these findings lay important foundations for future theoretical advancement about attitude toward PE and provide guidance for PE teachers on attitude intervention and PA promotion

    Design of an L-Band Cross-Dipole Phased Array Feed for FAST

    Get PDF

    EFFECTS OF TWO TYPES OF CONTROLLABLE DEFORMATION ON ENERGY EXTRACTION OF A FLEXIBLE HYDROFOIL

    Get PDF
    Energy extraction capacity of controllably flexible hydrofoil was studied under two identified deformation modes. Deformation modes, flexure parameters (flexure amplitude and flexure coefficient ) and motion parameters (reduced frequency f* and pitching amplitude 0) were investigated to understand the effects of controllably flexible deformation on energy extraction. The results reveal that deformation modes affect the effective angle of attack and vortex structure, which influence hydrodynamic performance. The energy extraction capacity improves from the deformation mode 2 to the rigid hydrofoil and then to the deformation mode 1. Under the deformation mode 1, lift, moment and power coefficients are increased obviously with the increase of , while they increase slightly with . Power coefficients and efficiency are sensitive to , which influences the development of leading-edge vortices. The flexible coefficient affects the wake structure, which has less impact on variation of force coefficient. As the increase in f*, averaged power coefficients firstly increase and then decrease. Further, the optimal f* is subjected to 0. Interestingly, a critical reduced frequency f*s, which is generally increase with increasing 0, was found under three modes. The condition that f* > f*s. is a prerequisite for subsequent adjustments of flexure modes and parameters according to different requirement of power coefficient under different tidal currents. The range of high efficiency () is: deformation mode 1 (36.1% rigid hydrofoils (34.2% deformation mode 2 (26.9%<<30.3%)

    Far-field Super-resolution Chemical Microscopy

    Full text link
    Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.Comment: 34 pages, 8 figures,1 tabl

    Transmit Waveform Optimization for Spatial-Frequency Diversity MIMO Radar in the Presence of Clutter

    Get PDF
    Benefitting from the independent target echoes of diversity channels, diversity MIMO radar can efficiently improve system performance, such as target detection and parameter estimation. Due to the fact that the RCS (radar cross section) of complex target may vary with the different transmitted carrier frequencies and array geometries, many recent researches study at the background of diversity MIMO radar equipped with widely separated array antennas or working at multiple carrier frequencies, respectively. In this paper, a new MIMO radar system combining the spatial and frequency diversities is investigated in the presence of signal-dependent clutter, which is called spatial-frequency diversity MIMO radar. With the prior information of target and clutter, a new method for joint optimization of transmitted waveforms and receiving filters is proposed to enhance the target detection ability of spatial-frequency diversity MIMO radar. Inspired by the MIMO communication system, the water-filling algorithm is introduced into the transmitted energy allocation problem for each carrier frequency channel. Simulation results show that the proposed system has a better performance in output signal-to-clutter-noise ratio (SCNR) compared to conventional diversity MIMO radar system

    An Organic–Inorganic Hybrid Cathode Based on S–Se Dynamic Covalent Bonds

    Get PDF
    A diphenyl trisulfide–selenium nanowire (DPTS‐Se) organic–inorganic hybrid cathode material is presented for rechargeable lithium batteries. During discharge, three voltage plateaus associated with three lithiation processes are observed. During recharge, the combination of the radicals formed upon delithiation leads to several new phenyl sulfoselenide compounds which are confirmed by HPLC‐QTof‐MS. The hybrid cathode exhibits superior cycling stability over pristine Se or DPTS as cathode alone. The first discharge shows a capacity of 96.5 % of the theoretical specific capacity and the cell retains 69.2 % of the initial capacity over 250 cycles. The hybrid cathode also shows a high Coulombic efficiency of over 99 % after 250 cycles. This study demonstrates that the combination of organic polysulfide and selenium can not only improve the utilization of active materials but also enhance the cycling performance

    Biophysical Phenotyping and Modulation of ALDH+ Inflammatory Breast Cancer Stem‐Like Cells

    Full text link
    Cancer stem‐like cells (CSCs) have been shown to initiate tumorigenesis and cancer metastasis in many cancer types. Although identification of CSCs through specific marker expression helps define the CSC compartment, it does not directly provide information on how or why this cancer cell subpopulation is more metastatic or tumorigenic. In this study, the functional and biophysical characteristics of aggressive and lethal inflammatory breast cancer (IBC) CSCs at the single‐cell level are comprehensively profiled using multiple microengineered tools. Distinct functional (cell migration, growth, adhesion, invasion and self‐renewal) and biophysical (cell deformability, adhesion strength and contractility) properties of ALDH+ SUM149 IBC CSCs are found as compared to their ALDH− non‐CSC counterpart, providing biophysical insights into why CSCs has an enhanced propensity to metastasize. It is further shown that the cellular biophysical phenotype can predict and determine IBC cells’ tumorigenic ability. SUM149 and SUM159 IBC cells selected and modulated through biophysical attributes—adhesion and stiffness—show characteristics of CSCs in vitro and enhance tumorigenicity in in vivo murine models of primary tumor growth. Overall, the multiparametric cellular biophysical phenotyping and modulation of IBC CSCs yields a new understanding of IBC’s metastatic properties and how they might develop and be targeted for therapeutic interventions.This study comprehensively profiles the biophysical characteristics of inflammatory breast cancer stem‐like cells to delineate the so‐called “biophysical phenotype” of the model of the most metastatic breast cancer subtype. Evidence indicates that the cellular biophysical phenotype can predict and determine cancer cells’ tumorigenic ability.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147780/1/smll201802891_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147780/2/smll201802891.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147780/3/smll201802891-sup-0001-S1.pd
    • 

    corecore