97 research outputs found

    Astrometric Detection of Double Gravitational Microlensing Events

    Get PDF
    If a gravitational microlensing event is caused by a widely separated binary lens and the source approaches both lens components, the source flux is successively magnified by the individual lenses: double microlensing events. If events are observed astrometrically, double lensing events are expected to occur with an increased frequency due to the long range astrometric effect of the companion. We find that although the trajectory of the source star image centroid shifts of an astrometric double lensing event has a distorted shape from both of the elliptical ones induced by the individual single lens components, event duplication can be readily identified by the characteristic loop in the trajectory formed during the source's passage close to the companion. We determine and compare the probabilities of detecting double lensing events from both photometric and astrometric lensing observations by deriving analytic expressions for the relations between binary lensing parameters to become double lensing events. From this determination, we find that for a given set of the binary separation and the mass ratio the astrometric probability is roughly an order higher than the photometric probability. Therefore, we predict that a significant fraction of events that will be followed up by using future high precision interferometeric instruments will be identified as double lensing events.Comment: total 6 pages, including 4 figures and no table, ApJ, submitte

    Radiative transfer in disc galaxies - V. The accuracy of the KB approximation

    Get PDF
    We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined (i85i \gtrsim 85^{\circ}) and/or optically thick (central face-on optical depth 1\gtrsim1) galaxy models, the approximation can give rise to substantial errors, sometimes, up to 40%\gtrsim 40\%. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no "simple recipe" to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though it's slower than the KB approximation.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Photometric defocus observations of transiting extrasolar planets

    Full text link
    We have carried out photometric follow-up observations of bright transiting extrasolar planets using the CbNUOJ 0.6m telescope. We have tested the possibility of obtaining high photometric precision by applying the telescope defocus technique allowing the use of several hundred seconds in exposure time for a single measurement. We demonstrate that this technique is capable of obtaining a root-mean-square scatter of order sub-millimagnitude over several hours for a V \sim 10 host star typical for transiting planets detected from ground-based survey facilities. We compare our results with transit observations with the telescope operated in in-focus mode. High photometric precision is obtained due to the collection of a larger amount of photons resulting in a higher signal compared to other random and systematic noise sources. Accurate telescope tracking is likely to further contribute to lowering systematic noise by probing the same pixels on the CCD. Furthermore, a longer exposure time helps reducing the effect of scintillation noise which otherwise has a significant effect for small-aperture telescopes operated in in-focus mode. Finally we present the results of modelling four light-curves for which a root-mean-square scatter of 0.70 to 2.3 milli-magnitudes have been achieved.Comment: 12 pages, 11 figures, 5 tables. Submitted to Journal of Astronomy and Space Sciences (JASS
    corecore