22 research outputs found

    Elastic and electrical properties of calcite-cemented artificial sandstones based on a new manufacturing method

    Get PDF
    Calcite cement is widely existing in sandstones and can significantly affect the elastic and electrical properties of sandstones. Accordingly, understanding the effects of calcite cement on the elastic and electrical rock properties is of key importance for the accurate characterization of sandstone reservoirs through seismic and electromagnetic surveys. To obtain such knowledge, we design and implement dedicated laboratory experiments to investigate the effects of calcite cement and porosity on the P- and S-wave velocities and electrical resistivity of synthetic calcite-cemented sandstones made using a new recipe. The experimental results show that elastic velocities and electrical resistivity generally decrease with increasing porosity when the content of the calcite cement keeps constant, whereas the elastic and electrical rock properties exhibit complex variation with cement content in sandstones with approximately the same porosity. Analyses and interpretation of the experimental data indicate that the elastic and electrical rock properties are affected jointly by porosity, the content and distribution of the calcite cement, as well as the microstructure of the pore space resulting from the different axial stress employed for the consolidation of the rock samples. The results have revealed the mechanisms of how porosity and calcite cement affect the elastic and electrical properties of calcite-cemented sandstones, and provided a theoretical basis for the accurate characterization of sandstone reservoirs through seismic and electromagnetic surveys

    Human pluripotent stem cell-derived epicardial progenitors can differentiate to endocardial-like endothelial cells.

    Get PDF
    During heart development, epicardial progenitors contribute various cardiac lineages including smooth muscle cells, cardiac fibroblasts, and endothelial cells. However, their specific contribution to the human endothelium has not yet been resolved, at least in part due to the inability to expand and maintain human primary or pluripotent stem cell (hPSC)-derived epicardial cells. Here we first generated CDH5-2A-eGFP knock-in hPSC lines and differentiated them into self-renewing WT1+ epicardial cells, which gave rise to endothelial cells upon VEGF treatment in vitro. In addition, we found that the percentage of endothelial cells correlated with WT1 expression in a WT1-2A-eGFP reporter line. The resulting endothelial cells displayed many endocardium-like endothelial cell properties, including high expression levels of endocardial-specific markers, nutrient transporters and well-organized tight junctions. These findings suggest that human epicardial progenitors may have the capacity to form endocardial endothelium during development and have implications for heart regeneration and cardiac tissue engineering

    Ocjene, prikazi i skupovi

    Get PDF
    Ocjene knjiga/zbornika radova/skupova: Josip Matasović i paradigma kulturne povijesti: zbornik radova znanstvenog skupa održanog u Slavonskom Brodu 23.-24. studenoga 2012., ur. Suzana Leček, Slavonski Brod, Zagreb: Hrvatski institut za povijest, Podružnica za povijest Slavonije, Srijema i Baranje, Hrvatski državni arhiv Društvo za hrvatsku povjesnicu, 2013., 446. str.; Josip Glaurdić, Vrijeme Europe: Zapadne sile i raspad Jugoslavije, Zagreb: Mate d.o.o., 2011., 453.str.; 21. godišnja konferencija Euroclia – „Kako podijeliti naše kulturno nasljeđe“ Skopje-Ohrid, 31. ožujka -5. travnja 2014

    The effect of Er3+ concentration on the kinetics of multiband upconversion in NaYF4:Yb/Er microcrystals

    Get PDF
    In Yb-Er co-doped upconversion (UC) nanomaterials, upconversion luminescence (UCL) can be modulated to generate multiband UCL emissions by changing the concentration of activator Er3+. Nonetheless, the effect of the Er3+ concentrations on the kinetics of these emissions is still unknown. We here study the single β-NaYF4:Yb3+/Er3+ microcrystal (MC) doped with different Er3+ concentrations by nanosecond time-resolved spectroscopy. Interestingly, different Er3+ doping concentrations exhibit different UCL emission bands and UCL response rates. At low Er3+ doping concentrations (1 mol%), multiband emission in β-NaYF4:Yb3+/Er3+ (20/1 mol%) MCs could not be observed and the response rate of UCL was slow (5–10 μs) in β-NaYF4:Yb3+/Er3+. Increasing the Er3+ doping concentration to 10 mol% can shorten the distance between Yb3+ ions and Er3+ ions, which promotes the energy transfer between them. β-NaYF4:Yb3+/Er3+ (20/10 mol%) can achieve obvious multiband UCL and a quick response rate (0.3 µs). However, a further increase in the Er doping concentration (80 mol%) makes MCs limited by the CR process and cannot achieve the four-photon UC process (4F5/2 → 2K13/2 and 2H9/2 → 2D5/2). Therefore, the result shows that changing the Er3+ doping concentration could control the energy flow between the different energy levels in Er3+, which could affect the response time and UCL emission of the Yb/Er doped rare earth materials. Our work can facilitate the development of fast-response optoelectronics, optical-sensing, and display industries

    Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells.

    Get PDF
    Human pluripotent stem cell (hPSC)-derived endothelial cells and their progenitors are important for vascular research and therapeutic revascularization. Here, we report a completely defined endothelial progenitor differentiation platform that uses a minimalistic medium consisting of Dulbecco's modified eagle medium and ascorbic acid, lacking of albumin and growth factors. Following hPSC treatment with a GSK-3β inhibitor and culture in this medium, this protocol generates more than 30% multipotent CD34+ CD31+ endothelial progenitors that can be purified to >95% CD34+ cells via magnetic activated cell sorting (MACS). These CD34+ progenitors are capable of differentiating into endothelial cells in serum-free inductive media. These hPSC-derived endothelial cells express key endothelial markers including CD31, VE-cadherin, and von Willebrand factor (vWF), exhibit endothelial-specific phenotypes and functions including tube formation and acetylated low-density lipoprotein (Ac-LDL) uptake. This fully defined platform should facilitate production of proliferative, xeno-free endothelial progenitor cells for both research and clinical applications

    Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions.

    Get PDF
    The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically-defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies

    Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    No full text
    High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process

    Theoretical Modeling of Dielectric Properties of Artificial Shales

    No full text
    Accurately modeling the anisotropic dielectric properties of shales is important for the interpretation of dielectric data acquired from shales as source rocks and unconventional reservoirs. We have developed a multiphase incremental model for the frequency dependent anisotropic dielectric properties of sedimentary rocks and presented an approach based on the developed model to simulate the measured anisotropic dielectric behaviors of artificial shales. The new model was built based on the theoretical basis of differential effective medium models for any number of mineral grain components aligned in any direction and was shown to be independent of the mixing order. The model incorporates the measured orientation distribution function of the clay particles to determine the shale dielectric anisotropy, and the frequency dependent dielectric behaviors of the wet clay minerals are obtained by inverting the dielectric properties of the artificial sample composed of clay and the same brine as in other artificial shales. The modeling technique combined important polarization mechanisms in the intermediate frequency range and was shown to give satisfactory fit to the measured frequency dependent anisotropic relative permittivity and conductivity of the artificial shales with varying silt contents by using a reasonable aspect ratio and constant dielectric parameters for the silt grains

    Relationships among low frequency (2Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones

    No full text
    The improved interpretation of marine controlled source electromagnetic (CSEM) data requires knowledge of the inter-relationships between reservoir parameters and low frequency electrical resistivity. Hence, the electrical resistivities of 67 brine (35 g/l) saturated sandstone samples with a range of petrophysical properties (porosity from 2% to 29%, permeability from 0.0001 mD to 997.49 mD and volumetric clay content from 0 to 28%) were measured in the laboratory at a frequency of 2 Hz using a four-electrode circumferential resistivity method with an accuracy of ± 2%. The results show that sandstones with porosity higher than 9% and volumetric clay content up to 22% behave like clean sandstones and follow Archie's law for a brine concentration of 35 g/l. By contrast, at this brine salinity, sandstones with porosity less than 9% and volumetric clay content above 10% behave like shaly sandstones with non-negligible grain surface conductivity. A negative, linear correlation was found between electrical resistivity and hydraulic permeability on a logarithmic scale. We also found good agreement between our experimental results and a clay pore blocking model based on pore-filling and load-bearing clay in a sand/clay mixture, variable (non-clay) cement fraction and a shaly sandstone resistivity model. The model results indicate a general transition in shaly sandstones from clay-controlled resistivity to sand-controlled resistivity at about 9% porosity. At such high brine concentrations, no discernible clay conduction effect was observed above 9% porosity
    corecore