38 research outputs found

    Semantic-aware Transmission for Robust Point Cloud Classification

    Full text link
    As three-dimensional (3D) data acquisition devices become increasingly prevalent, the demand for 3D point cloud transmission is growing. In this study, we introduce a semantic-aware communication system for robust point cloud classification that capitalizes on the advantages of pre-trained Point-BERT models. Our proposed method comprises four main components: the semantic encoder, channel encoder, channel decoder, and semantic decoder. By employing a two-stage training strategy, our system facilitates efficient and adaptable learning tailored to the specific classification tasks. The results show that the proposed system achieves classification accuracy of over 89\% when SNR is higher than 10 dB and still maintains accuracy above 66.6\% even at SNR of 4 dB. Compared to the existing method, our approach performs at 0.8\% to 48\% better across different SNR values, demonstrating robustness to channel noise. Our system also achieves a balance between accuracy and speed, being computationally efficient while maintaining high classification performance under noisy channel conditions. This adaptable and resilient approach holds considerable promise for a wide array of 3D scene understanding applications, effectively addressing the challenges posed by channel noise.Comment: submitted to globecom 202

    Human pluripotent stem cell-derived epicardial progenitors can differentiate to endocardial-like endothelial cells.

    Get PDF
    During heart development, epicardial progenitors contribute various cardiac lineages including smooth muscle cells, cardiac fibroblasts, and endothelial cells. However, their specific contribution to the human endothelium has not yet been resolved, at least in part due to the inability to expand and maintain human primary or pluripotent stem cell (hPSC)-derived epicardial cells. Here we first generated CDH5-2A-eGFP knock-in hPSC lines and differentiated them into self-renewing WT1+ epicardial cells, which gave rise to endothelial cells upon VEGF treatment in vitro. In addition, we found that the percentage of endothelial cells correlated with WT1 expression in a WT1-2A-eGFP reporter line. The resulting endothelial cells displayed many endocardium-like endothelial cell properties, including high expression levels of endocardial-specific markers, nutrient transporters and well-organized tight junctions. These findings suggest that human epicardial progenitors may have the capacity to form endocardial endothelium during development and have implications for heart regeneration and cardiac tissue engineering

    Evaluation of voltage-dependent calcium channel gamma gene families identified several novel potential susceptible genes to schizophrenia

    Get PDF
    Voltage-gated L-type calcium channels (VLCC) are distributed widely throughout the brain. Among the genes involved in schizophrenia (SCZ), genes encoding VLCC subunits have attracted widespread attention. Among the four subunits comprising the VLCC (α − 1, α −2/δ, β, and γ), the γ subunit that comprises an eight-member protein family is the least well understood. In our study, to further investigate the risk susceptibility by the γ subunit gene family to SCZ, we conducted a large-scale association study in Han Chinese individuals. The SNP rs17645023 located in the intergenic region of CACNG4 and CACNG5 was identified to be significantly associated with SCZ (OR = 0.856, P = 5.43 × 10(−5)). Similar results were obtained in the meta-analysis with the current SCZ PGC data (OR = 0.8853). We also identified a two-SNP haplotype (rs10420331-rs11084307, P = 1.4 × 10(−6)) covering the intronic region of CACNG8 to be significantly associated with SCZ. Epistasis analyses were conducted, and significant statistical interaction (OR = 0.622, P = 2.93 × 10(−6), P(perm) < 0.001) was observed between rs192808 (CACNG6) and rs2048137 (CACNG5). Our results indicate that CACNG4, CACNG5, CACNG6 and CACNG8 may contribute to the risk of SCZ. The statistical epistasis identified between CACNG5 and CACNG6 suggests that there may be an underlying biological interaction between the two genes

    Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells.

    Get PDF
    Human pluripotent stem cell (hPSC)-derived endothelial cells and their progenitors are important for vascular research and therapeutic revascularization. Here, we report a completely defined endothelial progenitor differentiation platform that uses a minimalistic medium consisting of Dulbecco's modified eagle medium and ascorbic acid, lacking of albumin and growth factors. Following hPSC treatment with a GSK-3β inhibitor and culture in this medium, this protocol generates more than 30% multipotent CD34+ CD31+ endothelial progenitors that can be purified to >95% CD34+ cells via magnetic activated cell sorting (MACS). These CD34+ progenitors are capable of differentiating into endothelial cells in serum-free inductive media. These hPSC-derived endothelial cells express key endothelial markers including CD31, VE-cadherin, and von Willebrand factor (vWF), exhibit endothelial-specific phenotypes and functions including tube formation and acetylated low-density lipoprotein (Ac-LDL) uptake. This fully defined platform should facilitate production of proliferative, xeno-free endothelial progenitor cells for both research and clinical applications

    Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions.

    Get PDF
    The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically-defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies

    ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining

    Get PDF
    Background New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. Results We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. Conclusion The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies

    Genome-Wide Interaction Analysis with DASH Diet Score Identified Novel Loci for Systolic Blood Pressure

    Get PDF
    OBJECTIVE: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension (DASH) diet score in relation to systolic blood pressure (SBP).METHODS: We analyzed up to 9,420,585 biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European population-specific and cross-population meta-analyses.RESULTS: We identified three loci in European-specific analyses and an additional four loci in cross-population analyses at P for interaction &lt; 5e-8. We observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where the interaction effect size was 0.42±0.09 mm Hg (P for interaction = 9.4e-7) and 0.20±0.06 mm Hg (P for interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P = 4e-273) and cis-DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for rs117878928 is MTHFS, the highest narrow sense heritability accounted by SNPs potentially interacting with the DASH diet score in this locus was for gene ST20 at 15q25.1. CONCLUSION: We demonstrated gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations are needed to validate our findings.</p

    Transcription factor induction of vascular blood stem cell niches in vivo

    Get PDF
    The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche
    corecore