440 research outputs found
A Role of Swi/snf Complex in Aba-Dependent Drought Responsive Gene Expression in Arabidopsis Thaliana
The survival of plants as sessile organisms depends on their ability to cope with environmental challenges. Of key importance in this regard is the phytohormone abscisic acid (ABA). ABA not only promotes seed dormancy but also triggers growth arrest in postgermination embryos that encounter water stress. This is accompanied by increased desiccation tolerance. Postgermination ABA responses in Arabidopsis thaliana are mediated in large part by the ABA-induced basic domain/leucine zipper transcription factor ABA INSENSITIVE5 (ABI5). Here, I show that loss of function of the SWI/SNF chromatin remodeling ATPase BRAHMA (BRM) causes ABA hypersensitivity during postgermination growth arrest. ABI5 expression was derepressed in brm mutants in the absence of exogenous ABA and accumulated to high levels upon ABA sensing. This effect was likely direct; chromatin immunoprecipitation revealed BRM binding to the ABI5 locus. Moreover, loss of BRM activity led to destabilization of a nucleosome likely to repress ABI5 transcription. Genetic interaction revealed that the abi5 null mutant was epistatic to BRM in postgermination growth arrest. In addition, vegetative growth defects typical of brm mutants in the absence of ABA treatment could be partially overcome by reduction of ABA responses, and brm mutants displayed increased drought tolerance. I propose a role for BRM in the balance between growth or stress responses. Intriguingly, BRM resides at the ABI5 promoter both in the absence and presence of the stress signal. I found that BRM interacts with the core components of abscisic acid signaling transduction pathway. Moreover, the C-terminus of BRM can be phosphorylated in an ABA dependent manner in vitro. It is therefore likely that stress sensing inactivates the BRM complex to allow ABI5 upregulation
Four teachers' beliefs and strategies in teaching gifted students: A multiple case study
2002This multiple case study was conducted to explore how four regular classroom teachers, who
have a reputation for implementing differentiated practices to meet the needs of gifted
students, describe their educational experiences with gifted students in their regular
classrooms at an elementary school in the Midwestern USA. The four teachers' beliefs and
strategies for instructing gifted students and differentiating instruction, their willingness and
readiness to embrace change, collaboration, and their advanced training and knowledge were
discussed under the themes of the study. By illustrating the non-linear, complex,
context-specific reality of the four teachers' teaching experience, this small case study tried to
offer insight into the actual classroom and strategies in developing schema for future practice
for our gifted minds. The findings of this study contribute to our understanding of the
practices that teachers use to accommodate the needs of gifted students in regular classroom
Stomatal Lineage Control by Developmental Program and Environmental Cues
Stomata are micropores that allow plants to breathe and play a critical role in photosynthesis and nutrient uptake by regulating gas exchange and transpiration. Stomatal development, therefore, is optimized for survival and growth of the plant despite variable environmental conditions. Signaling cascades and transcriptional networks that determine the birth, proliferation, and differentiation of a stomate have been identified. These networks ensure proper stomatal patterning, density, and polarity. Environmental cues also influence stomatal development. In this review, we highlight recent findings regarding the developmental program governing cell fate and dynamics of stomatal lineage cells at the cell state- or single-cell level. We also overview the control of stomatal development by environmental cues as well as developmental plasticity associated with stomatal function and physiology. Recent advances in our understanding of stomatal development will provide a route to improving photosynthesis and water-stress resilience of crop plants in the climate change we currently face. © Copyright © 2021 Han, Kwak and Qi.1
Ethanol Extract of the Flower Chrysanthemum morifolium Augments Pentobarbital-Induced Sleep Behaviors: Involvement of Cl− Channel Activation
Dried Chrysanthemum morifolium flowers have traditionally been used in Korea for the treatment
of insomnia. This study was performed to investigate whether the ethanol extract of Chrysanthemum
morifolium flowers (EFC) enhances pentobarbital-induced sleep behaviors. EFC prolonged sleep time
induced by pentobarbital similar to muscimol, a GABAA receptors agonist. EFC also increased sleep
rate and sleep time when administrated with pentobarbital at a subhypnotic dosage. Both EFC and
pentobarbital increased chloride (Cl−) influx in primary cultured cerebellar granule cells. EFC
increased glutamic acid decarboxylase (GAD) expression levels, but had no effect on the expression
of α1-, β2-, and γ2-subunits of the GABAA receptor in the hippocampus of a mouse brain. This is in
contrast to treatment with pentobarbital, which showed decreased α1-subunit expression and no
change in GAD expression. In conclusion, EFC augments pentobarbital-induced sleep behaviors;
these effects may result from Cl− channel activation
Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials
Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (similar to 97.5 cd/A, similar to 35.5% photons per electron), green (similar to 101.5 cd/A, similar to 29.0% photons per electron), and white (similar to 74.2 cd/A, similar to 28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices.
High frequencies of Y-chromosome haplogroup O2b-SRY465 lineages in Korea: a genetic perspective on the peopling of Korea
<p>Abstract</p> <p>Background</p> <p>Koreans are generally considered a Northeast Asian group, thought to be related to Altaic-language-speaking populations. However, recent findings have indicated that the peopling of Korea might have been more complex, involving dual origins from both southern and northern parts of East Asia. To understand the male lineage history of Korea, more data from informative genetic markers from Korea and its surrounding regions are necessary. In this study, 25 Y-chromosome single nucleotide polymorphism markers and 17 Y-chromosome short tandem repeat (Y-STR) loci were genotyped in 1,108 males from several populations in East Asia.</p> <p>Results</p> <p>In general, we found East Asian populations to be characterized by male haplogroup homogeneity, showing major Y-chromosomal expansions of haplogroup O-M175 lineages. Interestingly, a high frequency (31.4%) of haplogroup O2b-SRY465 (and its sublineage) is characteristic of male Koreans, whereas the haplogroup distribution elsewhere in East Asian populations is patchy. The ages of the haplogroup O2b-SRY465 lineages (~9,900 years) and the pattern of variation within the lineages suggested an ancient origin in a nearby part of northeastern Asia, followed by an expansion in the vicinity of the Korean Peninsula. In addition, the coalescence time (~4,400 years) for the age of haplogroup O2b1-47z, and its Y-STR diversity, suggest that this lineage probably originated in Korea. Further studies with sufficiently large sample sizes to cover the vast East Asian region and using genomewide genotyping should provide further insights.</p> <p>Conclusions</p> <p>These findings are consistent with linguistic, archaeological and historical evidence, which suggest that the direct ancestors of Koreans were proto-Koreans who inhabited the northeastern region of China and the Korean Peninsula during the Neolithic (8,000-1,000 BC) and Bronze (1,500-400 BC) Ages.</p
Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass
Brassinosteroids (BRs) are naturally occurring steroidal hormones that play diverse roles in various processes during plant growth and development. Thus, genetic manipulation of endogenous BR levels might offer a way of improving the agronomic traits of crops, including plant architecture and stress tolerance. In this study, we produced transgenic creeping bentgrass (Agrostis stolonifera L.) overexpressing a BR-inactivating enzyme, Arabidopsis thaliana BR-related acyltransferase 1 (AtBAT1), which is known to catalyze the conversion of BR intermediates to inactive acylated conjugates. After putative transgenic plants were selected using herbicide resistance assay, genomic integration of the AtBAT1 gene was confirmed by genomic PCR and Southern blot analysis, and transgene expression was validated by northern blot analysis. The transgenic creeping bentgrass plants exhibited BR-deficient phenotypes, including reduced plant height with shortened internodes (i.e., semi-dwarf), reduced leaf growth rates with short, wide, and thick architecture, high chlorophyll contents, decreased numbers of vascular bundles, and large lamina joint bending angles (i.e., erect leaves). Subsequent analyses showed that the transgenic plants had significantly reduced amounts of endogenous BR intermediates, including typhasterol, 6-deoxocastasterone, and castasterone. Moreover, the AtBAT1 transgenic plants displayed drought tolerance as well as delayed senescence. Therefore, the results of the present study demonstrate that overexpression of an Arabidopsis BR-inactivating enzyme can reduce the endogenous levels of BRs in creeping bentgrass resulting in BR-deficient phenotypes, indicating that the AtBAT1 gene from a dicot plant is also functional in the monocot crop.111Ysciescopu
Use of Nafamostat Mesilate as an Anticoagulant during Extracorporeal Membrane Oxygenation
Although the incidence of bleeding complications during extracorporeal membrane oxygenator (ECMO) support has decreased in various trials, bleeding is still the most fatal complication. We investigated the ideal dosage and efficacy of nafamostat mesilate for use with ECMO in patients with acute cardiac or respiratory failure. We assessed 73 consecutive patients who received ECMO due to acute cardiac or respiratory failure between January 2006 and December 2009. To evaluate the efficacy of nafamostat mesilate, we divided the patients into 2 groups according to the anticoagulants used during ECMO support. All patients of nafamostat mesilate group were male with a mean age of 49.2 yr. Six, 3, 5, and 3 patients were diagnosed with acute myocardial infarction, cardiac arrest, septic shock, and acute respiratory distress syndrome, respectively. The mean dosage of nafamostat mesilate was 0.64 mg/kg/hr, and the mean duration of ECMO was 270.7 hr. The daily volume of transfused packed red blood cells, fresh frozen plasma, and cryoprecipitate and the number of complications related to hemorrhage and thrombosis was lower in the nafamostat mesilate group than in the heparin group. Nafamostat mesilate should be considered as an alternative anticoagulant to heparin to reduce bleeding complications during ECMO
Beneficial Effect of Efonidipine, an L- and T-Type Dual Calcium Channel Blocker, on Heart Rate and Blood Pressure in Patients With Mild-to-Moderate Essential Hypertension
Background and Objectives: Efonidipine hydrochloride, an L- and T-type dual calcium channel blocker, is suggested to have a heart rate (HR)-slowing action in addition to a blood pressure (BP)-lowering effect. The aim of this study was to determine the effect of efonidipine on HR and BP in patients with mild-to-moderate hypertension. Subjects and Methods: In a multi-center, prospective, open-labeled, single-armed study, we enrolled 53 patients who had mild-to-moderate hypertension {sitting diastolic BP (SiDBP) 90-110 mmHg}. After a 2-week washout, eligible patients were treated with efonidipine (40 mg once daily for 12 weeks). The primary end point was the change in HR from baseline to week 12. The secondary end-point included the change in trough sitting BP and 24-hour mean BP between baseline and week 12. Laboratory and clinical adverse events were monitored at each study visit (4, 8, and 12 weeks). Results: Fifty-two patients were included in the intention-to-treat analysis. After 12 weeks of treatment with efonidipine, the resting HR decreased significantly from baseline to week 12 (from 81.5??5.3 to 71.8??9.9 beats/minute (difference, -9.9??9.0 beats/minute), p<0.0001}. The trough BP {sitting systolic blood pressure (SiSBP) and SiDBP} and 24-hour mean BP also decreased significantly (SiSBP: from 144.6??8.2 to 132.9??13.5 mmHg, p<0.0001; SiDBP: from 96.9??5.4 to 88.3??8.6 mmHg, p<0.0001, 24-hour mean systolic BP: from 140.4??13.5 to 133.8??11.6 mmHg, p<0.0001; 24-hour mean diastolic BP: from 91.7??8.7 to 87.5??9.5 mmHg, p<0.0001). Conclusion: Efonidipine was effective in controlling both HR and BP in patients with mild-to-moderate hypertension. Copyright ?? 2010 The Korean Society of Cardiology
- …