2,305 research outputs found

    Spatial and Magnetic Confinement of Massless Dirac Fermions

    Full text link
    The massless Dirac fermions and the ease to introduce spatial and magnetic confinement in graphene provide us unprecedented opportunity to explore confined relativistic matter in this condensed-matter system. Here we report the interplay between the confinement induced by external electric fields and magnetic fields of the massless Dirac fermions in graphene. When the magnetic length lB is larger than the characteristic length of the confined electric potential lV, the spatial confinement dominates and a relatively small critical magnetic field splits the spatial-confinement-induced atomic-like shell states by switching on a pi Berry phase of the quasiparticles. When the lB becomes smaller than the lV, the transition from spatial confinement to magnetic confinement occurs and the atomic-like shell states condense into Landau levels (LLs) of the Fock-Darwin states in graphene. Our experiment demonstrates that the spatial confinement dramatically changes the energy spacing between the LLs and generates large electron-hole asymmetry of the energy spacing between the LLs. These results shed light on puzzling observations in previous experiments, which hitherto remained unaddressed.Comment: 4 Figures in main tex

    Patterns and Distributions of Urban Expansion in Global Watersheds

    Get PDF
    Abstract Understanding urban expansion at the watershed scale is important because watersheds are important carriers of ecological and environmental impacts. However, current analyses are mainly restricted to administrative units only. Here, we used a long‐term multitemporal data set of urban land to quantify the spatiotemporal trends in the extent and form of urban expansion from 1992 to 2016 in endorheic and exoreic watersheds, globally. Overall, urban expansion in 70% of watersheds (154/220) showed a decelerating trend. The average urban expansion speed of these watersheds in the last 6 years was approximately half of that in the last 24 years. Urban expansion speed in endorheic watersheds lagged behind the counterparts in exoreic watersheds, with the former approximately 1/4 of the latter. More importantly, the pattern of urban expansion in endorheic watersheds was following the low‐density and sprawling trend in exoreic watersheds, which could exert far‐reaching impacts on the sustainability of endorheic watersheds located in arid lands. These findings suggest the need to look beyond administrative city boundaries for land use planning and policies in the context of watershed management

    Targeting ferroptosis as a promising therapeutic strategy to treat cardiomyopathy

    Get PDF
    Cardiomyopathies are a clinically heterogeneous group of cardiac diseases characterized by heart muscle damage, resulting in myocardium disorders, diminished cardiac function, heart failure, and even sudden cardiac death. The molecular mechanisms underlying the damage to cardiomyocytes remain unclear. Emerging studies have demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by iron dyshomeostasis and lipid peroxidation, contributes to the development of ischemic cardiomyopathy, diabetic cardiomyopathy, doxorubicin-induced cardiomyopathy, and septic cardiomyopathy. Numerous compounds have exerted potential therapeutic effects on cardiomyopathies by inhibiting ferroptosis. In this review, we summarize the core mechanism by which ferroptosis leads to the development of these cardiomyopathies. We emphasize the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial effects in treating cardiomyopathies. This review suggests that inhibiting ferroptosis pharmacologically may be a potential therapeutic strategy for cardiomyopathy treatment

    Copper thiosemicarbazones: Antiproliferative action against C6 glioma cells

    Get PDF
    2(E)-2-[1-(4-pyridinyl)ethylidene]hydrazinecarbothioammidehydrochloride (1) and two of its copper complexes were synthesized and structurally characterized. Cu(I) polymeric complex {[Cu(SCN)(3-Acpy)2]}n (2) was synthesized by in situ mixing of Cu(BF4)2.6H2O, 4-acetylpyridine (4-Acpy) and semicarbazide whereas a dinuclear Cu(II) complex (3) was obtained from the reaction of Cu(BF4)2.6H2O, 4-acetylpyridine and ammonium thiocyanate. Magnetic measurements were performed for the dinuclear complex. All the thiosemicarbazones were cytotoxic against malignant RT2 glioblastoma cells (expressing p53 protein) with IC50 values in the 5.1-13.2 ”M range, and against malignant T98 glioblastoma cells (expressing mutant p53 protein) with IC50 values in the 4.5-31 ”M range. Coordination to copper strongly increased the cytotoxic potential in complexes 2 and 3, when compared to that of free ligand and were found to be more potent than cisplatin. All the test compounds (1-3) were able to induce cell death by apoptosis

    GeoGauss: Strongly Consistent and Light-Coordinated OLTP for Geo-Replicated SQL Database

    Full text link
    Multinational enterprises conduct global business that has a demand for geo-distributed transactional databases. Existing state-of-the-art databases adopt a sharded master-follower replication architecture. However, the single-master serving mode incurs massive cross-region writes from clients, and the sharded architecture requires multiple round-trip acknowledgments (e.g., 2PC) to ensure atomicity for cross-shard transactions. These limitations drive us to seek yet another design choice. In this paper, we propose a strongly consistent OLTP database GeoGauss with full replica multi-master architecture. To efficiently merge the updates from different master nodes, we propose a multi-master OCC that unifies data replication and concurrent transaction processing. By leveraging an epoch-based delta state merge rule and the optimistic asynchronous execution, GeoGauss ensures strong consistency with light-coordinated protocol and allows more concurrency with weak isolation, which are sufficient to meet our needs. Our geo-distributed experimental results show that GeoGauss achieves 7.06X higher throughput and 17.41X lower latency than the state-of-the-art geo-distributed database CockroachDB on the TPC-C benchmark
    • 

    corecore