1,549 research outputs found

    Weblog patterns and human dynamics with decreasing interest

    Full text link
    Weblog is the fourth way of network exchange after Email, BBS and MSN. Most bloggers begin to write blogs with great interest, and then their interests gradually achieve a balance with the passage of time. In order to describe the phenomenon that people's interest in something gradually decreases until it reaches a balance, we first propose the model that describes the attenuation of interest and reflects the fact that people's interest becomes more stable after a long time. We give a rigorous analysis on this model by non-homogeneous Poisson processes. Our analysis indicates that the interval distribution of arrival-time is a mixed distribution with exponential and power-law feature, that is, it is a power law with an exponential cutoff. Second, we collect blogs in ScienceNet.cn and carry on empirical studies on the interarrival time distribution. The empirical results agree well with the analytical result, obeying a special power law with the exponential cutoff, that is, a special kind of Gamma distribution. These empirical results verify the model, providing an evidence for a new class of phenomena in human dynamics. In human dynamics there are other distributions, besides power-law distributions. These findings demonstrate the variety of human behavior dynamics.Comment: 8 pages, 1 figure

    SUSY-QCD Effect on Top-Charm Associated Production at Linear Collider

    Get PDF
    We evaluate the contribution of SUSY-QCD to top-charm associated production at next generation linear colliders. Our results show that the production cross section of the process e+etcˉortˉce^+e^-\to t\bar c{or}\bar t c could be as large as 0.1 fb, which is larger than the prediction of the SM by a factor of 10810^8.Comment: version to appear in PR

    Top-quark spin correlation at Linear Colliders with anomalous couplings

    Get PDF
    We investigate the feasibility of probing anomalous top-quark couplings of WtbWtb, ZttˉZ t \bar{t}, and γttˉ\gamma t \bar{t} in terms of an effective Lagrangian with dimension-six operators at future e+ee^+e^- linear colliders with a c. m. energy s500800\sqrt s \sim 500-800 GeV. We first examine the constraints on these anomalous couplings from the ZbbˉZ\to b \bar{b} data at LEP I and from unitarity considerations. We then consider in detail the effects of anomalous couplings on ttˉt \bar{t} spin correlations in the top-pair production and decay with three spin bases: the helicity, beamline and off-diagonal bases. Our results show that the polarized beams are more suitable for exploring the effects of different new operators. For polarized beams, the helicity basis yields the best sensitivity.Comment: 23 pages, 10 figures, references adde

    Hadron Collider Signatures for New Interactions of Top and Bottom Quarks

    Full text link
    One of the main goals for hadron colliders is the study of the properties of the third generation quarks. We study the signatures for new TeV resonances that couple to top or bottom quarks both at the Tevatron Run II and at the LHC. We find that in the simplest production processes of Drell-Yan type at the Tevatron, the signals are overwhelmed by QCD backgrounds. We also find that it is possible to study these resonances when they are produced in association with a pair of heavy quarks or in association with a single top at the LHC.In particular, with an integrated luminosity of 300 fb1^{-1} at the LHC, it is possible to probe resonance masses up to around 2 TeV.Comment: 24 pages, 15 figures, Minor corrections, version to appear in Phys. Rev.

    Green’s function method to the ground state properties of a two-component Bose–Einstein condensate

    No full text
    The elementary excitation spectrum of a two-component Bose–Einstein condensate is obtained by Green’s function method. It is found to have two branches. In the long-wave limit, the two branches of the excitation spectrum are reduced to one phonon excitation and one single-particle excitation. With the obtained excitation spectrum and the Green’s functions, the depletion of the condensate and the ground state energy have also been calculated in this paper

    Graviton Resonances in E+ E- -> MU+ MU- at Linear Colliders with Beamstrahlung and ISR Effects

    Full text link
    Electromagnetic radiation emitted by the colliding beams is expected to play an important role at the next generation of high energy e^+ e^- linear collider(s). Focusing on the simplest process e+e- -> mu+ mu-, we show that radiative effects like initial state radiation (ISR) and beamstrahlung can lead to greatly-enhanced signals for resonant graviton modes of the Randall-Sundrum model.Comment: 20 pages Latex, 7 eps figure

    Gaps and excitations in fullerides with partially filled bands : NMR study of Na2C60 and K4C60

    Full text link
    We present an NMR study of Na2C60 and K4C60, two compounds that are related by electron-hole symmetry in the C60 triply degenerate conduction band. In both systems, it is known that NMR spin-lattice relaxation rate (1/T1) measurements detect a gap in the electronic structure, most likely related to singlet-triplet excitations of the Jahn-Teller distorted (JTD) C60^{2-} or C60^{4-}. However, the extended temperature range of the measurements presented here (10 K to 700 K) allows to reveal deviations with respect to this general trend, both at high and low temperatures. Above room temperature, 1/T1 deviates from the activated law that one would expect from the presence of the gap and saturates. In the same temperature range, a lowering of symmetry is detected in Na2C60 by the appearance of quadrupole effects on the 23Na spectra. In K4C60, modifications of the 13C spectra lineshapes also indicate a structural modification. We discuss this high temperature deviation in terms of a coupling between JTD and local symmetry. At low temperatures, 1/T1_1T tends to a constant value for Na2C60, both for 13C and 23Na NMR. This indicates a residual metallic character, which emphasizes the proximity of metallic and insulting behaviors in alkali fullerides.Comment: 12 pages, 13 figure

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure

    tbWt \to b W in NonCommutative Standard Model

    Full text link
    We study the top quark decay to b quark and W boson in the NonCommutative Standard Model (NCSM). The lowest contribution to the decay comes from the terms quadratic in the matrix describing the noncommutative (NC) effects while the linear term is seen to identically vanish because of symmetry. The NC effects are found to be significant only for low values of the NC characteristic scale.Comment: 11 page Latex file containing 2 eps figures (redrawn). More discussion included. To appear in PR

    Top-Quark Decay Via the Anomalous Coupling tˉcγ\bar t c \gamma at Hadron Colliders

    Full text link
    We determine the constraints on the anomalous top-quark coupling associated with the flavor-changing neutral current vertex tˉcγ\bar t c \gamma from the limits on the bb-quark rare decay bsγb\rightarrow s \gamma and non-standard top-quark decays. Based on these constraints, we discuss the experimental observability of the rare decay mode tcγt \rightarrow c \gamma, both at the Fermilab Tevatron with a luminosity-upgrade and at the LHC.Comment: 19 pages, 8 figures, RevTeX, postscript files available via anonymous ftp: ftp://ucdhep.ucdavis.edu/han/top/ (get paper_top.ps and fig*.ps
    corecore