6,596 research outputs found

    Lattice-coupled Antiferromagnet on Frustrated Lattices

    Full text link
    Lattice-coupled antiferromagnetic spin model is analyzed for a number of frustrated lattices: triangular, Kagome, and pyrochlore. In triangular and Kagome lattices where ground state spins are locally ordered, the spin-lattice interaction does not lead to a static deformation of the lattice. In the pyrochlore structure, spin-lattice coupling supports a picture of the hexagon spin cluster proposed in the recent experiment[S. H. Lee et al. Nature, 418, 856 (2002)]. Through spin-lattice interaction a uniform contraction of the individual hexagons in the pyrochlore lattice can take place and reduce the exchange energy. Residual hexagon-hexagon interaction takes the form of a 3-states Potts model where the preferred directions of the spin-loop directors for nearby hexagons are mutually orthogonal

    Dynamical mean-field theory of Hubbard-Holstein model at half-filling: Zero temperature metal-insulator and insulator-insulator transitions

    Full text link
    We study the Hubbard-Holstein model, which includes both the electron-electron and electron-phonon interactions characterized by UU and gg, respectively, employing the dynamical mean-field theory combined with Wilson's numerical renormalization group technique. A zero temperature phase diagram of metal-insulator and insulator-insulator transitions at half-filling is mapped out which exhibits the interplay between UU and gg. As UU (gg) is increased, a metal to Mott-Hubbard insulator (bipolaron insulator) transition occurs, and the two insulating states are distinct and can not be adiabatically connected. The nature of and transitions between the three states are discussed.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter

    θ-D Approximation Technique for Nonlinear Optimal Speed Control Design of Surface-Mounted PMSM Drives

    Get PDF
    This paper proposes nonlinear optimal controller and observer schemes based on a θ-D approximation approach for surface-mounted permanent magnet synchronous motors (PMSMs). By applying the θ-D method in both the controller and observer designs, the unsolvable Hamilton–Jacobi–Bellman equations are switched to an algebraic Riccati equation and statedependent Lyapunov equations (SDLEs). Then, through selecting the suitable coefficient matrices, the SDLEs become algebraic, so the complex matrix operation technique, i.e., the Kronecker product applied in the previous papers to solve the SDLEs is eliminated. Moreover, the proposed technique not only solves the problem of controlling the large initial states, but also avoids the excessive online computations. By utilizing a more accurate approximation method, the proposed control system achieves superior control performance (e.g., faster transient response, more robustness under the parameter uncertainties and load torque variations) compared to the state-dependent Riccati equation-based control method and conventional PI controlmethod. The proposed observer-based control methodology is tested with an experimental setup of a PMSM servo drive using a Texas Instruments TMS320F28335 DSP. Finally, the experimental results are shown for proving the effectiveness of the proposed control approac

    θ-D Approximation Technique for Nonlinear Optimal Speed Control Design of Surface-Mounted PMSM Drives

    Get PDF
    This paper proposes nonlinear optimal controller and observer schemes based on a θ-D approximation approach for surface-mounted permanent magnet synchronous motors (PMSMs). By applying the θ-D method in both the controller and observer designs, the unsolvable Hamilton–Jacobi–Bellman equations are switched to an algebraic Riccati equation and statedependent Lyapunov equations (SDLEs). Then, through selecting the suitable coefficient matrices, the SDLEs become algebraic, so the complex matrix operation technique, i.e., the Kronecker product applied in the previous papers to solve the SDLEs is eliminated. Moreover, the proposed technique not only solves the problem of controlling the large initial states, but also avoids the excessive online computations. By utilizing a more accurate approximation method, the proposed control system achieves superior control performance (e.g., faster transient response, more robustness under the parameter uncertainties and load torque variations) compared to the state-dependent Riccati equation-based control method and conventional PI controlmethod. The proposed observer-based control methodology is tested with an experimental setup of a PMSM servo drive using a Texas Instruments TMS320F28335 DSP. Finally, the experimental results are shown for proving the effectiveness of the proposed control approac

    Nearly Massless Electrons in the Silicon Interface with a Metal Film

    Full text link
    We demonstrate the realization of nearly massless electrons in the most widely used device material, silicon, at the interface with a metal film. Using angle-resolved photoemission, we found that the surface band of a monolayer lead film drives a hole band of the Si inversion layer formed at the interface with the film to have nearly linear dispersion with an effective mass about 20 times lighter than bulk Si and comparable to graphene. The reduction of mass can be accounted for by repulsive interaction between neighboring bands of the metal film and Si substrate. Our result suggests a promising way to take advantage of massless carriers in silicon-based thin-film devices, which can also be applied for various other semiconductor devices.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Symmetry-protected flatband condition for Hamiltonians with local symmetry

    Full text link
    We derive symmetry-based conditions for tight-binding Hamiltonians with flatbands to have compact localized eigenstates occupying a single unit cell. The conditions are based on unitary operators commuting with the Hamiltonian and associated with local symmetries that guarantee compact localized states and a flatband. We illustrate the conditions for compact localized states and flatbands with simple Hamiltonians with given symmetries. We also apply these results to general cases such as the Hamiltonian with long-range hoppings and higher-dimensional Hamiltonian.Comment: 7 pages, 2 figure

    The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors

    Get PDF
    Electrochemical double layer capacitors (EDLCs) are energy storage devices that have been used for a wide range of electronic applications. In particular, the electrolyte is one of the important components, directly related to the capacitance and stability. Herein, we first report a series of the smallest quaternary ammonium salts (QASs), with ether groups on tails and tetrafluoroborate (BF4) as an anion, for use in EDLCs. To find the optimal structure, various QASs with different sized head groups and ether-containing tail groups were systematically compared. Comparing two nearly identical structures with and without ether groups, QASs with oxygen atoms showed improved capacitance, proving that ions with oxygen atoms move more easily than their counterparts at lower electric fields. Moreover, the ether containing QASs showed low activation energy values of conductivities, leading to smaller IR drops during the charge and discharge processes, resulting in an overall higher capacitance
    corecore