83 research outputs found

    Cross-position Activity Recognition with Stratified Transfer Learning

    Full text link
    Human activity recognition aims to recognize the activities of daily living by utilizing the sensors on different body parts. However, when the labeled data from a certain body position (i.e. target domain) is missing, how to leverage the data from other positions (i.e. source domain) to help learn the activity labels of this position? When there are several source domains available, it is often difficult to select the most similar source domain to the target domain. With the selected source domain, we need to perform accurate knowledge transfer between domains. Existing methods only learn the global distance between domains while ignoring the local property. In this paper, we propose a \textit{Stratified Transfer Learning} (STL) framework to perform both source domain selection and knowledge transfer. STL is based on our proposed \textit{Stratified} distance to capture the local property of domains. STL consists of two components: Stratified Domain Selection (STL-SDS) can select the most similar source domain to the target domain; Stratified Activity Transfer (STL-SAT) is able to perform accurate knowledge transfer. Extensive experiments on three public activity recognition datasets demonstrate the superiority of STL. Furthermore, we extensively investigate the performance of transfer learning across different degrees of similarities and activity levels between domains. We also discuss the potential applications of STL in other fields of pervasive computing for future research.Comment: Submit to Pervasive and Mobile Computing as an extension to PerCom 18 paper; First revision. arXiv admin note: substantial text overlap with arXiv:1801.0082

    Joint Air Quality and Weather Prediction Based on Multi-Adversarial Spatiotemporal Networks

    Full text link
    Accurate and timely air quality and weather predictions are of great importance to urban governance and human livelihood. Though many efforts have been made for air quality or weather prediction, most of them simply employ one another as feature input, which ignores the inner-connection between two predictive tasks. On the one hand, the accurate prediction of one task can help improve another task's performance. On the other hand, geospatially distributed air quality and weather monitoring stations provide additional hints for city-wide spatiotemporal dependency modeling. Inspired by the above two insights, in this paper, we propose the Multi-adversarial spatiotemporal recurrent Graph Neural Networks (MasterGNN) for joint air quality and weather predictions. Specifically, we first propose a heterogeneous recurrent graph neural network to model the spatiotemporal autocorrelation among air quality and weather monitoring stations. Then, we develop a multi-adversarial graph learning framework to against observation noise propagation introduced by spatiotemporal modeling. Moreover, we present an adaptive training strategy by formulating multi-adversarial learning as a multi-task learning problem. Finally, extensive experiments on two real-world datasets show that MasterGNN achieves the best performance compared with seven baselines on both air quality and weather prediction tasks.Comment: 9 pages, 6 figure

    Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models

    Full text link
    Various adaptation methods, such as LoRA, prompts, and adapters, have been proposed to enhance the performance of pre-trained vision-language models in specific domains. The robustness of these adaptation methods against distribution shifts have not been studied. In this study, we assess the robustness of 11 widely-used adaptation methods across 4 vision-language datasets under multimodal corruptions. Concretely, we introduce 7 benchmark datasets, including 96 visual and 87 textual corruptions, to investigate the robustness of different adaptation methods, the impact of available adaptation examples, and the influence of trainable parameter size during adaptation. Our analysis reveals that: 1) Adaptation methods are more sensitive to text corruptions than visual corruptions. 2) Full fine-tuning does not consistently provide the highest robustness; instead, adapters can achieve better robustness with comparable clean performance. 3) Contrary to expectations, our findings indicate that increasing the number of adaptation data and parameters does not guarantee enhanced robustness; instead it results in even lower robustness. We hope this study could benefit future research in the development of robust multimodal adaptation methods. The benchmark, code, and dataset used in this study can be accessed at \url{https://adarobustness.github.io}

    Boosting Cross-Domain Speech Recognition with Self-Supervision

    Full text link
    The cross-domain performance of automatic speech recognition (ASR) could be severely hampered due to the mismatch between training and testing distributions. Since the target domain usually lacks labeled data, and domain shifts exist at acoustic and linguistic levels, it is challenging to perform unsupervised domain adaptation (UDA) for ASR. Previous work has shown that self-supervised learning (SSL) or pseudo-labeling (PL) is effective in UDA by exploiting the self-supervisions of unlabeled data. However, these self-supervisions also face performance degradation in mismatched domain distributions, which previous work fails to address. This work presents a systematic UDA framework to fully utilize the unlabeled data with self-supervision in the pre-training and fine-tuning paradigm. On the one hand, we apply continued pre-training and data replay techniques to mitigate the domain mismatch of the SSL pre-trained model. On the other hand, we propose a domain-adaptive fine-tuning approach based on the PL technique with three unique modifications: Firstly, we design a dual-branch PL method to decrease the sensitivity to the erroneous pseudo-labels; Secondly, we devise an uncertainty-aware confidence filtering strategy to improve pseudo-label correctness; Thirdly, we introduce a two-step PL approach to incorporate target domain linguistic knowledge, thus generating more accurate target domain pseudo-labels. Experimental results on various cross-domain scenarios demonstrate that the proposed approach effectively boosts the cross-domain performance and significantly outperforms previous approaches.Comment: Accepted by IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 202

    OT-Attack: Enhancing Adversarial Transferability of Vision-Language Models via Optimal Transport Optimization

    Full text link
    Vision-language pre-training (VLP) models demonstrate impressive abilities in processing both images and text. However, they are vulnerable to multi-modal adversarial examples (AEs). Investigating the generation of high-transferability adversarial examples is crucial for uncovering VLP models' vulnerabilities in practical scenarios. Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples for VLP models significantly. However, they do not consider the optimal alignment problem between dataaugmented image-text pairs. This oversight leads to adversarial examples that are overly tailored to the source model, thus limiting improvements in transferability. In our research, we first explore the interplay between image sets produced through data augmentation and their corresponding text sets. We find that augmented image samples can align optimally with certain texts while exhibiting less relevance to others. Motivated by this, we propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack. The proposed method formulates the features of image and text sets as two distinct distributions and employs optimal transport theory to determine the most efficient mapping between them. This optimal mapping informs our generation of adversarial examples to effectively counteract the overfitting issues. Extensive experiments across various network architectures and datasets in image-text matching tasks reveal that our OT-Attack outperforms existing state-of-the-art methods in terms of adversarial transferability

    Wav2vec-S: Semi-Supervised Pre-Training for Low-Resource ASR

    Full text link
    Self-supervised pre-training could effectively improve the performance of low-resource automatic speech recognition (ASR). However, existing self-supervised pre-training are task-agnostic, i.e., could be applied to various downstream tasks. Although it enlarges the scope of its application, the capacity of the pre-trained model is not fully utilized for the ASR task, and the learned representations may not be optimal for ASR. In this work, in order to build a better pre-trained model for low-resource ASR, we propose a pre-training approach called wav2vec-S, where we use task-specific semi-supervised pre-training to refine the self-supervised pre-trained model for the ASR task thus more effectively utilize the capacity of the pre-trained model to generate task-specific representations for ASR. Experiments show that compared to wav2vec 2.0, wav2vec-S only requires a marginal increment of pre-training time but could significantly improve ASR performance on in-domain, cross-domain and cross-lingual datasets. Average relative WER reductions are 24.5% and 6.6% for 1h and 10h fine-tuning, respectively. Furthermore, we show that semi-supervised pre-training could close the representation gap between the self-supervised pre-trained model and the corresponding fine-tuned model through canonical correlation analysis.Comment: Accepted by Interspeech 202

    Understanding and Improving In-Context Learning on Vision-language Models

    Full text link
    Recently, in-context learning (ICL) on large language models (LLMs) has received great attention, and this technique can also be applied to vision-language models (VLMs) built upon LLMs. These VLMs can respond to queries by conditioning responses on a series of multimodal demonstrations, which comprise images, queries, and answers. Though ICL has been extensively studied on LLMs, its research on VLMs remains limited. The inclusion of additional visual information in the demonstrations motivates the following research questions: which of the two modalities in the demonstration is more significant? How can we select effective multimodal demonstrations to enhance ICL performance? This study investigates the significance of both visual and language information. Our findings indicate that ICL in VLMs is predominantly driven by the textual information in the demonstrations whereas the visual information in the demonstrations barely affects the ICL performance. Subsequently, we provide an understanding of the findings by analyzing the model information flow and comparing model inner states given different ICL settings. Motivated by our analysis, we propose a simple yet effective approach, termed Mixed Modality In-Context Example Selection (MMICES), which considers both visual and language modalities when selecting demonstrations and shows better ICL performance. Extensive experiments are conducted to support our findings, understanding, and improvement of the ICL performance of VLMs.Comment: 8 pages, 10 figure
    corecore