69 research outputs found

    Diagnostic and prognostic role of circRNAs in pancreatic cancer: a meta-analysis

    Get PDF
    BackgroundCircular RNAs (circRNAs) are types of endogenous noncoding RNAs produced by selective splicing that are expressed highly specifically in various organisms and tissues and have numerous clinical implications in the regulation of cancer development and progression. Since circRNA is resistant to digestion by ribonucleases and has a long half-life, there is increasing evidence that circRNA can be used as an ideal candidate biomarker for the early diagnosis and prognosis of tumors. In this study, we aimed to reveal the diagnostic and prognostic value of circRNA in human pancreatic cancer (PC).MethodsA systematic search for publications from inception to 22 July 2022 was conducted on Embase, PubMed, Web of Science (WOS), and the Cochrane Library databases. Available studies that correlated circRNA expression in tissue or serum with the clinicopathological, diagnostic, and prognostic values of PC patients were enrolled. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to evaluate clinical pathological characteristics. Area under the curve (AUC), sensitivity, and specificity were adopted to assess diagnostic value. Hazard ratios (HRs) were utilized to assess disease-free survival (DFS) and overall survival (OS).ResultsThis meta-analysis enrolled 32 eligible studies, including six on diagnosis and 21 on prognosis, which accounted for 2,396 cases from 245 references. For clinical parameters, high expression of carcinogenic circRNA was significantly associated with degree of differentiation (OR = 1.85, 95% CI = 1.47–2.34), TNM stage (OR = 0.46, 95% CI = 0.35–0.62), lymph node metastasis (OR = 0.39, 95% CI = 0.32–0.48), and distant metastasis (OR = 0.26, 95% CI = 0.13–0.51). As for clinical diagnostic utility, circRNA could discriminate patients with pancreatic cancer from controls, with an AUC of 0.86 (95% CI: 0.82–0.88), a relatively high sensitivity of 84%, and a specificity of 80% in tissue. In terms of prognostic significance, carcinogenic circRNA was correlated with poor OS (HR = 2.00, 95% CI: 1.76–2.26) and DFS (HR = 1.96, 95% CI: 1.47–2.62).ConclusionIn summary, this study demonstrated that circRNA may act as a significant diagnostic and prognostic biomarker for pancreatic cancer

    Novel core/void/shell composite phase change materials for high temperature thermal energy storage

    Get PDF
    Abstract(#br)Metallic solid-liquid phase change materials (SLPCMs) are crucial for the thermal energy storage technology of various industrial systems. However, the encapsulation of metallic SLPCMs is still technically difficult. In this pursuit, the present research envisaged the development of a novel technology to successfully prepare the core(=Al-Si/Bi)/void/shell(=Al 2 O 3 ) composite SLPCMs by using Al/Bi immiscible alloy powders as starting material and tetraethoxysilane as SiO 2 source. The Al-Si alloy and Al 2 O 3 shell were in-situ synthesized by the displacement reaction between SiO 2 and molten Al. Interestingly, most of the Bi distributed in the shell of Al/Bi immiscible alloy powders could not only improve the activity of alloy powders and promote the formation of precursor shell, but also be recycled by evaporation to form the void layer during the calcination process of composite SLPCMs. The produced void layer provided a space buffer to alleviate the volume expansion of the core SLPCM, and thereby improving the thermal cycling stability of the prepared composite SLPCMs. The thermal cycling test results showed that after 300 thermal cycles, the melting latent heat reduction of the core(=Al-Si/Bi)/void/shell(=Al 2 O 3 ) composite SLPCMs (24.3-31.7J/g) was much less than that of the core(=Al-Si)/shell(=Al 2 O 3 ) composite SLPCM (58.1J/g). Moreover, the prepared Al-Si/Bi/Al 2 O 3 exhibited an adjustable melting temperature (571.9℃ to 631.9℃) and average particle diameter (39.3μm to 112.6μm), relatively high thermal conductivity [2.068W(mK) -1 to 2.966W(mK) -1 ], and excellent thermal energy storage capacity (209.5J/g to 278.2J/g). Thus, the prepared Al-Si/Bi/Al 2 O 3 composite SLPCMs are potential thermal energy storage materials, which can be used to improve the energy efficiency of various industrial systems

    A strategy for designing microencapsulated composite phase change thermal storage materials with tunable melting temperature

    Get PDF
    Abstract(#br)Thermal energy storage technology with high temperature phase change materials (PCMs) plays an increasingly important role in the concentrated solar power plants and industrial waste heat recovery systems. In this study, a novel displacement reaction between tetraethoxysilane as SiO 2 source and molten raw Al powder was purposed to successfully prepare Al-Si/Al 2 O 3 high temperature composite PCMs. Interestingly, by proposed synthetic methodology, we not only achieved the in-situ synthesis of Al-Si alloy PCM and Al 2 O 3 shell, but also realized the controllability of Al-Si alloy composition and Al 2 O 3 shell layer thickness. Our results indicated that the melting temperature of the prepared composite PCMs depended on the composition of Al-Si alloy, and could be designed within a certain temperature range (from 574.0 °C to 641.4 °C), instead of a particular temperature point. The melting temperature adjustability of the prepared composite PCMs provided an additional flexibility in different working temperature conditions. Moreover, the prepared composite PCMs exhibited a relatively high thermal storage capacity (248.6 J/g to 331.0 J/g), good thermal stability, excellent repeatable utilization property and certain shell layer self-repairing ability in the working temperature range. Therefore, the prepared composite PCMs can prove to be promising thermal energy storage materials for improving the energy efficiency in various systems under different working temperature conditions

    Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays

    Get PDF
    A search for CPCP violation using TT-odd correlations is performed using the four-body D0→K+K−π+π−D^0 \to K^+K^-\pi^+\pi^- decay, selected from semileptonic BB decays. The data sample corresponds to integrated luminosities of 1.0 fb−11.0\,\text{fb}^{-1} and 2.0 fb−12.0\,\text{fb}^{-1} recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The CPCP-violating asymmetry aCPT-odda_{CP}^{T\text{-odd}} is measured to be (0.18±0.29(stat)±0.04(syst))%(0.18\pm 0.29\text{(stat)}\pm 0.04\text{(syst)})\%. Searches for CPCP violation in different regions of phase space of the four-body decay, and as a function of the D0D^0 decay time, are also presented. No significant deviation from the CPCP conservation hypothesis is found

    Measurement of CP asymmetry in B-s(0) -> D-s(-/+) K--/+ decays

    Get PDF
    We report on measurements of the time-dependent CP violating observables in Bs0→Ds∓K±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb−1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=−1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=−0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. We use these observables to make the first measurement of the CKM angle γ\gamma in Bs0→Ds∓K±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (115−43+28_{-43}^{+28})∘^\circ modulo 180∘^\circ at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0_{s}^{0}  → Ds∓_{s}^{∓} K±^{±} decays using a dataset corresponding to 1.0 fb−1^{−1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf_{f} = 0.53±0.25±0.04, AfΔΓ_{f}^{ΔΓ}  = 0.37 ± 0.42 ± 0.20, Af‾ΔΓ=0.20±0.41±0.20 {A}_{\overline{f}}^{\varDelta \varGamma }=0.20\pm 0.41\pm 0.20 , Sf_{f} = −1.09±0.33±0.08, Sf‾=−0.36±0.34±0.08 {S}_{\overline{f}}=-0.36\pm 0.34\pm 0.08 , where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0_{s}^{0} mixing phase −2βs_{s} leads to the first extraction of the CKM angle γ from Bs0_{s}^{0}  → Ds∓_{s}^{∓} K±^{±} decays, finding γ = (115− 43+ 28_{− 43}^{+ 28} )° modulo 180° at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0→Ds∓K±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb−1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=−1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=−0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0B^0_s mixing phase −2βs-2\beta_s leads to the first extraction of the CKM angle γ\gamma from Bs0→Ds∓K±B^0_s \rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (115−43+28_{-43}^{+28})∘^\circ modulo 180∘^\circ at 68% CL, where the error contains both statistical and systematic uncertainties

    Apply VR to Carry out Crew Escape Training

    No full text
    • …
    corecore