17 research outputs found

    Determination of conifer age biomarker DAL1 interactome using Y2H-seq

    Get PDF
    Age is a sophisticated physiological signal that ensures the sequence of different developmental stages in organisms. The regulation of ageing pathways appears to differ between gymnosperms and angiosperms. We previously identified DAL1 as a conserved conifer age biomarker that plays a crucial role in the transition from vegetative to reproductive life-history phases in pines. Therefore, elucidating the specific interaction events related to DAL1 is key to understanding how age drives conifer development. Large-scale yeast two-hybrid (Y2H) analysis followed by next-generation high-throughput sequencing (Y2H-seq) allowed us to identify 135 PtDAL1 interacting proteins in Pinus tabuliformis. Our study found that PtDAL1 interacting proteins showed an ageing-related module, with sophisticated interacting networks composed of transcription factors (TFs), transcriptional regulators (TRs), and kinases. These interacting proteins are produced in response to a variety of phytohormones and environmental signals, and are likely involved in wood formation, needle development, oleoresin terpenoids biosynthesis, and reproductive development. In this study, we propose a novel regulation model of conifer ageing pathways whereby PtDAL1 coordinates different environmental stimuli and interacts with corresponding proteins to regulate appropriate development

    The Chinese pine genome and methylome unveil key features of conifer evolution

    Get PDF
    Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development

    Multi-Objective Optimization Design of a New Permanent Magnet Synchronous Motor Based on the Taguchi Method

    No full text
    To improve the performance and stability of the permanent magnet synchronous motor (PMSM), a new type of built-in permanent magnet synchronous motor (IPMSMB) is proposed. Firstly, the performance indexes of IPMSM, IPMSMA, and IPMSMB are compared by finite element analysis. The results show that the effective harmonic of the air-gap magnetic density of the motor increases when the rotor outer diameter is piecewise eccentric. At the same time, torque ripple and cogging torque decrease. Then the permanent magnet structure of the motor is changed on the basis of IPMSMA to form IPMSMB, which improves the output torque of the motor. Secondly, the Taguchi method is used to optimize the structural parameters of IPMSMB. After optimization, the output torque of IPMSMB is increased by 4.6%. The cogging torque and torque ripple are decreased by 45.5% and 25.7%, respectively. The consumption of permanent magnets is reduced by 7.74%. Finally, the rationality of the motor design is verified by the prototype experiment

    New Sliding Mode Control Based on Tracking Differentiator and RBF Neural Network

    No full text
    In order to solve the problem that the control system of permanent magnet synchronous motor (PMSM) is difficult to meet the high control accuracy due to the influence of non-repeated disturbances such as external disturbance, system parameter variation, and friction force during operation, a novel sliding mode control (NSMC) method based on tracking differentiator (TD) and radial basis (RBF) neural network was proposed. Firstly, a new sliding mode reaching law is proposed by adding the state variables to the traditional exponential reaching law, which can effectively reduce the chattering of the system. Then, the speediest tracking differentiator is designed to estimate the given speed signal and its differential signal, to realize the novel sliding mode variable structure algorithm. Finally, the RBF neural network is used to compensate for the uncertainty and external interference of the system; the robustness of the system is further improved by adaptive weight updating. The simulation results show that, by comparing with the traditional exponential approach law, the overshoot of 22 r/min is reduced by the control method based on the new hybrid reaching law, the speed decrease amplitude is reduced by 77.1% under load disturbance, and the speed recovery time is shortened by 0.059 s. After the optimization of the new sliding mode control method based on tracking differentiator and RBF neural network, the overshoot of 86 r/min is further reduced, the speed decrease amplitude of load disturbance is reduced again by 48.5%, and the speed recovery time is shortened again by 0.073 s

    The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine

    Get PDF
    DNA methylation level declines during aging of mammals. Here, the authors report single-base resolution landscape of cytosine DNA methylation at different ages of Chinese pine and show that the global cytosine DNA methylation gradually increases as age progresses.Epigenetics has been revealed to play a crucial role in the long-term memory in plants. However, little is known about whether the epigenetic modifications occur with age progressively in conifers. Here, we present the single-base resolution DNA methylation landscapes of the 25-gigabase Chinese pine (Pinus tabuliformis) genome at different ages. The result shows that DNA methylation is closely coupled with the regulation of gene transcription. The age-dependent methylation profile with a linearly increasing trend is the most significant pattern of DMRs between ages. Two segments at the five-prime end of the first ultra-long intron in DAL1, a conservative age biomarker in conifers, shows a gradual decline of CHG methylation as the age increased, which is highly correlated with its expression profile. Similar high correlation is also observed in nine other age marker genes. Our results suggest that DNA methylation serves as an important epigenetic signature of developmental age in conifers

    A Novel Approach to Investigate the Core Vibration in Power Transformers

    No full text

    The long road to bloom in conifers

    Get PDF
    More than 600 species of conifers (phylum Pinophyta) serve as the backbone of the Earth’s terrestrial plant community and play key roles in global carbon and water cycles. Although coniferous forests account for a large fraction of global wood production, their productivity relies largely on the use of genetically improved seeds. However, acquisition of such seeds requires recurrent selection and testing of genetically superior parent trees, eventually followed by the establishment of a seed orchard to produce the improved seeds. The breeding cycle for obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period. Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The molecular regulatory programs associated with the reproductive transition and annual reproductive cycle of conifers are modulated by environmental cues and endogenous developmental signals. Mounting evidence indicates that an increase in global average temperature seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that control the vegetative to reproductive transition is imminent. However, comparison of the signaling pathways that control the reproductive transition in conifers and the floral transition in Arabidopsis has revealed many differences. Therefore, a more complete understanding of the underlying regulatory mechanisms that control the conifer reproductive transition is of paramount importance. Here, we review our current understanding of the molecular basis for reproductive regulation, highlight recent discoveries, and review new approaches for molecular research on conifers

    The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine

    Get PDF
    DNA methylation level declines during aging of mammals. Here, the authors report single-base resolution landscape of cytosine DNA methylation at different ages of Chinese pine and show that the global cytosine DNA methylation gradually increases as age progresses

    Niclosamide Ethanolamine Salt Alleviates Idiopathic Pulmonary Fibrosis by Modulating the PI3K-mTORC1 Pathway

    No full text
    Idiopathic pulmonary fibrosis (IPF) is an interstitial pneumonia characterized by chronic progressive fibrosis, ultimately leading to respiratory failure and early mortality. Although not fully explored, the major causative factors in IPF pathogenesis are dysregulated fibroblast proliferation and excessive accumulation of extracellular matrix (ECM) deposited by myofibroblasts differentiated from pulmonary fibroblasts. More signalling pathways, including the PI3K-Akt-mTOR and autophagy pathways, are involved in IPF pathogenesis. Niclosamide ethanolamine salt (NEN) is a highly effective multitarget small-molecule inhibitor reported in antitumor studies. Here, we reported that in an IPF animal model treated with NEN for 14 days, attractive relief of pulmonary function and hydroxyproline content were observed. To further explore, the therapeutic effect of NEN in IPF and pathological changes in bleomycin-challenged mouse lung sections were assessed. Additionally, the effects of NEN on abnormal proliferation and ECM production in IPF cell models established with TGF-β1-stimulated A549 cells or DHLF-IPF cells were studied. In nonclinical studies, NEN ameliorated lung function and histopathological changes in bleomycin-challenged mice, and the lung hydroxyproline content was significantly diminished with NEN treatment. In vitro, NEN inhibited PI3K-mTORC1 signalling and arrested the cell cycle to prevent uncontrolled fibroblast proliferation. Additionally, NEN inhibited TGF-β1-induced epithelial–mesenchymal transition (EMT) and ECM accumulation via the mTORC1-4EBP1 axis. Furthermore, NEN-activated noncanonical autophagy resensitized fibroblasts to apoptosis. The above findings demonstrated the potential antifibrotic effect of NEN mediated via modulation of the PI3K-mTORC1 and autophagy pathways. These data provide strong evidence for a therapeutic role for NEN in IPF

    Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope

    No full text
    Anodization is a promising technique to form high-<i>k</i> dielectrics for low-power organic field-effect transistor (OFET) applications. However, the surface quality of the dielectric, which is mainly inherited from the metal electrode, can be improved further than other fabrication techniques, such as sol–gel. In this study, we applied the template stripping method to fabricate a low-power single-crystalline OFET based on the anodized AlO<sub><i>x</i></sub> dielectric. We found that the template stripping method largely improves the surface roughness of the deposited Al and allows for the formation of a high-quality AlO<sub><i>x</i></sub> high-<i>k</i> dielectric by anodization. The ultraflat AlO<sub><i>x</i></sub>/SAM dielectric combined with a single-crystal 2,6-diphenylanthracene (DPA) semiconductor produced a nearly defect-free interface with a steep subthreshold swing (SS) of 66 mV/decade. The current device is a promising candidate for future ultralow-power applications. Other than metal deposition, template stripping could provide a general approach to improve thin-film quality for many other types of materials and processes
    corecore