11,278 research outputs found

    Before the Page time: maximum entanglements or the return of the monster?

    Full text link
    The entropy of Hawking radiation is approximately equal to the maximum of entanglement entropy if a black hole is in a state before the Page time, i.e., when the entropy of Hawking radiation is smaller than the entropy of the black hole. However, if there exists a process generating smaller entanglements rather than maximal entanglements, the entropy of Hawking radiation will become smaller than the maximum of the entanglement entropy before the Page time. If this process accumulates, even though the probability is small, the emitted radiation can eventually be distinguished from the exactly thermal state. In this paper, we provide several interpretations of this phenomenon: (1) information of the collapsed matter is emitted before the Page time, (2) there exists a firewall or a non-local effect before the Page time, or (3) the statistical entropy is greater than the areal entropy; a monster is formed. Our conclusion will help resolve the information loss paradox by providing groundwork for further research.Comment: 19 pages, 8 figure

    Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    Get PDF
    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics

    One Time Programmable Antifuse Memory Based on Bulk Junctionless Transistor

    Get PDF
    One time programmable (OTP) antifuse base memory is demonstrated based on a bulk junctionless gate-all-around (GAA) nanowire transistor technology. The presented memory consists of a single transistor (1T) footprint without any process modification. The source/drain (S/D) and gate respectively become bit line and word line where the antifuse is formed by oxide breakdown across the gate and the channel. The channel is connected directly to the bit line due to junctionless S/D and inherently isolated from the neighboring cell by the GAA channel. Therefore, an array of 1T antifuse OTP can be a candidate for the sub-5-nanometer technology node

    Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film

    Full text link
    A waveguide structure consisting of a tapered nanofiber on a metal film is proposed and analyzed to support highly localized hybrid plasmonic modes. The hybrid plasmonic mode can be efficiently excited through the in-line tapered fiber based on adiabatic conversion and collected by the same fiber, which is very convenient in the experiment. Due to the ultrasmall mode area of plasmonic mode, the local electromagnetic field is greatly enhanced in this movable waveguide, which is potential for enhanced coherence light emitter interactions, such as waveguide quantum electrodynamics, single emitter spectrum and nonlinear optics
    corecore