23 research outputs found
Anomalous Thermal Transport of SrTiO Driven by Anharmonic Phonon Renormalization
SrTiO has been extensively investigated owing to its abundant degrees of
freedom for modulation. However, the microscopic mechanism of thermal transport
especially the relationship between phonon scattering and lattice distortion
during the phase transition are missing and unclear. Based on deep-potential
molecular dynamics and self-consistent \textit{ab initio} lattice dynamics, we
explore the lattice anharmonicity-induced tetragonal-to-cubic phase transition
and explain this anomalous behavior during the phase transition. Our results
indicate the significant role of the renormalization of third-order interatomic
force constants to second-order terms. Our work provides a robust framework for
evaluating the thermal transport properties during structural transformation,
benefitting the future design of promising thermal and phononic materials and
devices
The protective role of DOT1L in UV-induced melanomagenesis
The DOT1L histone H3 lysine 79 (H3K79) methyltransferase plays an oncogenic role in MLL-rearranged leukemogenesis. Here, we demonstrate that, in contrast to MLL-rearranged leukemia, DOT1L plays a protective role in ultraviolet radiation (UVR)-induced melanoma development. Specifically, the DOT1L gene is located in a frequently deleted region and undergoes somatic mutation in human melanoma. Specific mutations functionally compromise DOT1L methyltransferase enzyme activity leading to reduced H3K79 methylation. Importantly, in the absence of DOT1L, UVR-induced DNA damage is inefficiently repaired, so that DOT1L loss promotes melanoma development in mice after exposure to UVR. Mechanistically, DOT1L facilitates DNA damage repair, with DOT1L-methylated H3K79 involvement in binding and recruiting XPC to the DNA damage site for nucleotide excision repair (NER). This study indicates that DOT1L plays a protective role in UVR-induced melanomagenesis
The Flower-like Co3O4 Hierarchical Microspheres for Methane Catalytic Oxidation
The development of non-noble Co3O4 catalysts exposing highly active crystal planes to low-temperature methane oxidation is still a challenge. Hence, a facile solvothermal method was adapted to construe flower-like Co3O4 hierarchical microspheres (Co3O4-FL), which are composed of nanosheets with dominantly exposed {112} crystal planes. The flower-like hierarchical structure not only promotes the desorption of high levels of active surface oxygen and enhances reducibility, but also facilitates an increase in lattice oxygen as the active species. As a result, Co3O4-FL catalysts offer improved methane oxidation, with a half methane conversion temperature (T50) of 380 °C (21,000 mL g−1 h−1), which is much lower than that of commercial Co3O4 catalysts (Co3O4-C). This study will provide guidance for non-noble metal catalyst design and preparation for methane oxidation and other oxidative reactions
Progress of Apple Rootstock Breeding and Its Use
Apple rootstock breeding has achieved great progress worldwide. In this review, we first summarize the rootstock breeding targets and utilization in main apple-producing countries. Furthermore, we discuss the focus and important research areas of apple rootstock breeding through five aspects: parent selection and setting of crosses, target genes and marker-assisted breeding, root configuration-guided breeding, apomictic resource utilization, and the application of genetic engineering. Finally, we propose an apple rootstock division plan for China, which has a large potential to provide guidance for apple rootstock breeding and utilization in different apple-producing areas of China. Keywords: apple, rootstock breeding, root configuration, apomictic resource utilization, rootstock divisio
Anti-Jahn-Teller effect induced ultrafast insulator to metal transition in perovskite BaBiO3
The Jahn-Teller (JT) effect involves the ions M with a degenerate electronic state distorting the corner-sharing MO6 octahedra to lift the degeneracy, inducing strong coupling of electrons to lattice, and mediating the exotic properties in perovskite oxides. Conversely, the anti-Jahn-Teller (AJT) effect refers to the deformation against the Jahn-Teller-distorted MO6 octahedra. However, it is difficult to experimentally execute both effects descending from the fine-tuning of crystal structures. We propose the AJT can be introduced by THz laser illumination at 11.71 THz in a candidate superconducting perovskite material BaBiO3 near room temperature. The illumination coherently drives the infrared-active phonon that excites the Raman breathing mode through the quadratic-linear nonlinear interaction. The process is characterized by the emergence of an AJT effect, accompanied by an insulator-to-metal transition occurring on the picosecond timescale. This study underlines the important role of crystal structure engineering by coherent phonon excitation in designing optoelectronic devices
Development and validation of a deep learning model for predicting postoperative survival of patients with gastric cancer
Abstract Background Deep learning (DL), a specialized form of machine learning (ML), is valuable for forecasting survival in various diseases. Its clinical applicability in real-world patients with gastric cancer (GC) has yet to be extensively validated. Methods A combined cohort of 11,414 GC patients from the Surveillance, Epidemiology and End Results (SEER) database and 2,846 patients from a Chinese dataset were utilized. The internal validation of different algorithms, including DL model, traditional ML models, and American Joint Committee on Cancer (AJCC) stage model, was conducted by training and testing sets on the SEER database, followed by external validation on the Chinese dataset. The performance of the algorithms was assessed using the area under the receiver operating characteristic curve, decision curve, and calibration curve. Results DL model demonstrated superior performance in terms of the area under the curve (AUC) at 1, 3, and, 5 years post-surgery across both datasets, surpassing other ML models and AJCC stage model, with AUCs of 0.77, 0.80, and 0.82 in the SEER dataset and 0.77, 0.76, and 0.75 in the Chinese dataset, respectively. Furthermore, decision curve analysis revealed that the DL model yielded greater net gains at 3 years than other ML models and AJCC stage model, and calibration plots at 3 years indicated a favorable level of consistency between the ML and actual observations during external validation. Conclusions DL-based model was established to accurately predict the survival rate of postoperative patients with GC
Whole-Canopy Photosynthetic Characterization of Apple Tree and the Effects Induced by Grafting on Rootstocks with Different Vigor
Leaf photosynthesis is pivotal for the synthesis of carbohydrates; however, the growth and development of horticultural crops are more closely related to canopy photosynthetic capacity. Measurements of canopy photosynthesis allow a better evaluation of the fruit tree performance at the canopy scale. Therefore, an open chamber system to determine instantaneous canopy apparent photosynthesis (CAPi) was investigated. CAPi slightly overestimated the biomass accumulation by 5.9%, which revealed that the CAPi method is valuable for quantifying canopy photosynthesis. Further, many woody horticultural plants are usually grafted for propagation, such as apples, whereas the rootstocks always influence the canopy size and photosynthesis. In this study, the effect of dwarfing, semi-dwarfing, and vigorous apple rootstocks on canopy photosynthesis was studied. Compared to vigorous rootstock, dwarfing rootstock significantly reduced the leaf net photosynthetic rate and total leaf area by 20.8% and 53.1%, respectively, and resulted in a 59.7% reduction in CAPi. Throughout the study, CAPi was an effective method that should be considered for canopy photosynthesis measurement of horticultural crops in the future
Functional Optical Coherence Tomography of Rat Cortical Neurovascular Activation during Monopulse Electrical Stimulation with the Microelectrode Array
This paper presents a study to evoke rat cortical functional activities, including hemodynamic and neural tissue signal changes, by monopulse electrical stimulation with a microelectrode array using functional optical coherence tomography (fOCT). Based on the principal component analysis and fuzzy clustering method (PCA-FCM), the hemodynamic response of different size blood vessels in rat cortex are analyzed, showing that the hemodynamic response of the superficial large blood vessels is more concentrated. In the regions of neural tissue where blood vessels are removed, positive significant pixels (the intensity of the pixel for five consecutive frames is greater than the average value plus triple standard deviation) and negative significant pixels (the intensity of the pixel for five consecutive frames is less than the average value minus triple standard deviation) exist, and the averaged intensity signal responds rapidly with an onset time of ~20.8 ms. Furthermore, the hemodynamic response was delayed by ~3.5 s from the neural tissue response. fOCT can provide a label-free, large-scale and depth-resolved map of cortical neurovascular activation, which is a promising technology to monitor cortical small-scale neurovascular activities