371 research outputs found

    Additional aspects of elastohydrodynamic lubrication

    Get PDF
    An up-to-date review of the varying aspects of elastohydrodynamic lubrication is presented.. Some recent work on elastohydrodynamic lubrication of materials of low elastic modulus as well as on hydrodynamic lubrication is included. Both these topics are applicable for contacts with any ellipticity parameter (ranging from a circular contact to a line contact)

    Elastohydrodynamic lubrication of elliptical contacts

    Get PDF
    The determination of the minimum film thickness within contact is considered for both fully flooded and starved conditions. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. The fully flooded results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. These results are applied to materials of high elastic modulus (hard EHL), such as metal, and to materials of low elastic modulus(soft EHL), such as rubber. In addition to the film thickness equations that are developed, contour plots of pressure and film thickness are given which show the essential features of elastohydrodynamically lubricated conjunctions. The crescent shaped region of minimum film thickness, with its side lobes in which the separation between the solids is a minimum, clearly emerges in the numerical solutions. In addition to the 3 presented for the fully flooded results, 15 more cases are used for hard EHL contacts and 18 cases are used for soft EHL contacts in a theoretical study of the influence of lubricant starvation on film thickness and pressure. From the starved results for both hard and soft EHL contacts, a simple and important dimensionless inlet boundary distance is specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Contour plots of pressure and film thickness in and around the contact are shown for conditions

    Starved elastohydrodynamic lubricated elliptical contacts

    Get PDF
    A theoretical study of the influence of lubricant starvation on film thickness and pressure in hard and soft elliptical elastohydrodynamic contacts is presented. From the results for both hard and soft EHL contacts a simple and important dimensionless inlet boundary distance is specified. This inlet boundary defines whether a fully flooded or a starved condition exists in the contact. Furthermore it is found that the film thickness for a starved condition could be written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions. The theoretical findings are compared directly with results obtained experimentally

    Lubrication fundamentals

    Get PDF
    A lubricant is any substance that is used to reduce friction and wear and to provide smooth running and a satisfactory life for machine components. Lubrication fundamentals are discussed and the various lubrication mechanisms are defined. These include: hydrodynamic, elastohydrodynamic, mixed, boundary, and extreme pressure. Before the various lubrication mechanisms are presented, it is desirable to define conformal and nonconformal surfaces

    Fully flooded elastohydrodynamic lubricated elliptical contacts

    Get PDF
    Emphasis is on fully flooded, elastohydrodynamic lubricated, elliptical contacts. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. A brief description of the relevant equations used in the elastohydrodynamic lubrication of elliptical contacts is given. The most important practical aspect of the elastohydrodynamic theory is the determination of the minimum film thickness within the contact. The maintenance of a fluid film of adequate magnitude is an essential feature of the correct operation of lubricated machine elements. The results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. Film thickness equations are developed for materials of high elastic modulus, such as metal, and for materials of low elastic modulus, such as rubber. In addition to the film thickness equations that are developed, plots of pressure and film thickness are presented. These theoretical solutions for film thickness have all the essential features of previously reported experimental observations based on optical interferometry. Correlation between theory and experiments is also presented

    Stresses and deformations in elliptical contacts

    Get PDF
    Topics presented deal with defining conformal and nonconformal surfaces, curvature sum and difference, and surface and subsurface stresses in elliptical contacts. Load-deflection relationships for nonconformal contacts are developed. The deformation within the contact is, among other things, a function of the ellipticity parameter and elliptic integrals of the first and second kinds. Simplified expressions that allow quick calculations of the deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented

    Optimum parallel step-sector bearing lubricated with an incompressible fluid

    Get PDF
    The dimensionless parameters normally associated with a step sector thrust bearing are the film thickness ratio, the dimensionless step location, the number of sectors, the radius ratio, and the angular extent of the lubrication feed groove. The optimum number of sectors and the parallel step configuration for a step sector thrust bearing while considering load capacity or stiffness and assuming an incompressible fluid are presented

    Film shape calculations on supercomputers

    Get PDF
    Both scalar and vector operations are described to demonstrate usefulness of supercomputers (computers with peak computing speeds exceeding 100 million operative per second) in solving tribological problems. A simple kernel of the film shape calculations in an elastohydrodynamic lubricated rectangular contact is presented and the relevant equations are described. Both scalar and vector versions of the film shape code are presented. The run times of the two types of code indicate that over a 50-to-1 speedup of scalar to vector computational time for vector lengths typically used in elastohydrodynamic lubrication analysis is obtained

    Vapor Cavitation in Dynamically Loaded Journal Bearings

    Get PDF
    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented

    Elastohydrodynamic lubrication of rectangular contacts

    Get PDF
    An isothermal elastohydrodynamically lubricated rectangular contact was evaluated numerically. This required the simultaneous solution of the elasticity and Reynolds equations. In the elasticity analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure was applied over each area. The elastohydrodynamic lubrication theory thus developed was used to investigate the influence of the dimensionless speed, load, and materials parameters on minimum film thickness. Ten cases were used in obtaining the minimum film thickness formula. Plots are shown that indicate the details of the pressure distribution, film shape, and flow. The characteristic pressure spike is clearly in evidence as is the parallel film shape through the central portion of the contact, with a minimum film thickness occurring near the outlet of the contact
    corecore