5 research outputs found

    Disaster management in industrial areas: Perspectives, challenges and future research

    Get PDF
    Purpose: In most countries, development, growth, and sustenance of industrial facilities are given utmost importance due to the influence in the socio-economic development of the country. Therefore, special economic zones, or industrial areas or industrial cities are developed in order to provide the required services for the sustained operation of such facilities. Such facilities not only provide a prolonged economic support to the country but it also helps in the societal aspects as well by providing livelihood to thousands of people. Therefore, any disaster in any of the facilities in the industrial area will have a significant impact on the population, facilities, the economy, and threatens the sustainability of the operations. This paper provides review of such literature that focus on theory and practice of disaster management in industrial cities. Design/methodology/approach: In the paper, content analysis method is used in order to elicit the insights of the literature available. The methodology uses search methods, literature segregation and developing the current knowledge on different phases of industrial disaster management. Findings: It is found that the research is done in all phases of disaster management, namely, preventive phase, reactive phase and corrective phase. The research in each of these areas are focused on four main aspects, which are facilities, resources, support systems and modeling. Nevertheless, the research in the industrial cities is insignificant. Moreover, the modeling part does not explicitly consider the nature of industrial cities, where many of the chemical and chemical processing can be highly flammable thus creating a very large disaster impact. Some research is focused at an individual plant and scaled up to the industrial cities. The modeling part is weak in terms of comprehensively analyzing and assisting disaster management in the industrial cities. Originality/value: The comprehensive review using content analysis on disaster management is presented here. The review helps the researchers to understand the gap in the literature in order to extend further research for disaster management in large scale industrial cities.Scopu

    A real study-based modeling of stochastic behavior of traffic crash counts using penalized poisson-GzLM

    No full text
    Data-based prediction models for vehicular crash counts are in high demand by transport and traffic authorities in Qatar. The road crash models based on in-depth data are important for developing efficient road safety analysis and auditing. The collection of such data is often expensive or even not possible. This work outlines the process through which the penalized maximum likelihood-based Poisson regression is applied to model the vehicular crash as a function of several categories of driving licenses issued in Qatar during the period 2007-2012. A real case study from Qatar is introduced and analyzed. 2019 IEOM society international.Scopus2-s2.0-8508592113

    Flight Scheduling in the Airspace

    Get PDF
    This paper addresses an important problem in the aircraft traffic management caused by the rapid growth of air traffic. The air route traffic control center has to deal with different plans of airlines in which they specify a requested entry time of their aircraft to the airspace. Each flight has to be assigned to a track and a level in order to ensure the Federal Aviation Administration (FAA) safety standards. When two flights are assigned to the same track and level, a minimum separation time has to be ensured. If this condition could not be satisfied, one of the flight will be delayed. This solution is undesirable for many reasons such as missing the connecting flight, decrease in the passengers' satisfaction, etc. The problem of track-level scheduling can be defined as follows. Given a set of flights, each flight has to be assigned to one track and one level. To ensure the separation time between two flights assigned to the same track and level, it is possible to delay the requested departure time of a flight. The objective is to minimize the overall flight delay. To deal with this problem, we propose a mixed integer programming formulation to find a flight plan that minimizes the objective function, while ensuring the FAA safety standards. In particular, this model considers an aircraft-dependent separation time: the separation time depends on the type of the aircraft assigned to the same track and level. However, some problems are too large to be solved in a reasonable time with the proposed model using a commercial solver. In this study, we developed a scatter search (SS) to deal with larger instances. SS is an evolutionary heuristic and the feature to be a problem-independent structure. This metaheuristic has been efficiently applied to a variety of optimization problems. Initially, SS starts with a set of solutions (reference set) that is constantly updated through two procedures (solution generation and combination) in the aim to produce high-quality solutions. In order to assess the quality of the exact method and the scatter search, we carried out an experimental study on a set of instances that are generated from a real case data. This includes small (80 to 120 flights), medium (200 to 220 flights), and large (400 to 420 flights) instances. The mathematical model has been solved using CPLEX 12.6 and the scatter search has been coded using C language under Microsoft Visual Studio v12 environment. The tests were conducted under a Windows 7 machine with an Intel Core i7 and 8 GB of RAM. The model was tested on each instance with 1 hour time limit. The results show that no instances have been solved to optimality. For small instances, the model and the scatter search provide comparable results; however, for medium and large instances, scatter search gives the best results.qscienc

    Thermoelectric behavior of Bi2Te2.55Se0.45 with a tunable seebeck coefficient: A comparison between coarse needle-like structure and bulk nanostructured alloys

    No full text
    In this study, we compare the thermoelectric properties of coarse-grained n-type Bi2Te2.55Se0.45 alloy prepared by induction melting with the bulk-nanostructured prepared by ball milling and hot-pressing techniques. The corresponding thermoelectric properties showed different behavior for each material processed using different routes. The most striking result of the study is observing a p-type behavior and charge carrier transition from p-to n-type for the coarse-grained alloy. These observed phenomena are related mainly to the unique needle-like microstructure accompanied by high lattice strain. Lastly, the obtained figure-of-merit values for the coarse needle-like structure and bulk nanostructured Bi2Te2.55Se0.45 alloys are 0.20 and 0.80 at their optimum temperatures of 60 and 120 °C, respectively
    corecore