268 research outputs found

    CAML Does Not Modulate Tetherin-Mediated Restriction of HIV-1 Particle Release

    Get PDF
    Background: Tetherin/BST-2 is a recently-identified potent restriction factor in human cells that restricts HIV particle release following particle formation and budding at the plasma membrane. Vpu counteracts tetherin’s restriction of particle release in a manner that has not yet been fully defined. We recently identified calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting protein that also restricts particle release. We hypothesized that CAML may act to enhance tetherinmediated restriction of particle release and thereby explain how two distinct factors could be responsible for Vpuresponsive restriction. Methodology/Principal Findings: Endogenous levels of tetherin in human cells correlated well with their restriction pattern and responsiveness to Vpu, while levels of cellular CAML protein did not. Tetherin but not CAML was inducible by interferon in a wide variety of human cells. Stable depletion of human CAML in restrictive HeLa cells had no effect on cell surface levels of tetherin, and failed to relieve tetherin-mediated restriction. Stable depletion of tetherin from HeLa cells, in contrast, rendered HeLa cells permissive and Vpu-unresponsive. Tetherin but not CAML expression in permissive human cells rendered them restrictive and Vpu responsive. Depletion of CAML had no influence on cell surface levels of tetherin. Conclusions/Significance: We conclude that tetherin restricts particle release and does not require CAML for this effect

    Low temperature structural phase transition and incommensurate lattice modulation in the spin gap compound BaCuSi2O6

    Full text link
    Results of high resolution x-ray diffraction experiments are presented for single crystals of the spin gap compound BaCuSi2_2O6_6 in the temperature range from 16 to 300 K. The data show clear evidence of a transition from the room temperature tetragonal phase into an incommensurately modulated orthorhombic structure below ∼\sim100 K. This lattice modulation is characterized by a resolution limited wave vector {\bf q}IC_{IC}=(0,∼\sim0.13,0) and its 2nd^{nd} and 3rd^{rd} harmonics. The phase transition is first order and exhibits considerable hysteresis. This observation implies that the spin Hamiltonian representing the system is more complex than originally thought.Comment: 4 pages, 4 figure

    LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    Get PDF
    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy

    Roughening of close-packed singular surfaces

    Get PDF
    An upper bound to the roughening temperature of a close-packed singular surface, fcc Al (111), is obtained via free energy calculations based on thermodynamic integration using the embedded-atom interaction model. Roughening of Al (111) is predicted to occur at around 890 K, well below bulk melting (933 K), and it should therefore be observable, save for possible kinetic hindering.Comment: RevTeX 4 pages, embedded figure

    Getting Genetic Ancestry Right for Science and Society

    Full text link
    There is a scientific and ethical imperative to embrace a multidimensional, continuous view of ancestry and move away from continental ancestry categorie

    Low-lying, Rydberg states of polycyclic aromatic hydrocarbons (PAHs) and cyclic alkanes

    Get PDF
    TD-DFT calculations of low-lying, Rydberg states of a series of polycyclic hydrocarbons and cyclic alkanes are presented. Systematic variations in binding energies and photoelectron angular distributions for the first members of the s, p and d Rydberg series are predicted for increasing molecular complexity. Calculated binding energies are found to be in very good agreement with literature values where they exist for comparison. Experimental angle-resolved photoelectron spectroscopy results are presented for coronene, again showing very good agreement with theoretical predictions of binding energies and also for photoelectron angular distributions. The Dyson orbitals for the small "hollow" carbon structures, cubane, adamantane and dodecahedrane, are shown to have close similarities to atomic s, p and d orbitals, similar to the superatom molecular orbitals (SAMOs) reported for fullerenes, indicating that these low-lying, diffuse states are not restricted to π-conjugated molecules. © 2017 the Owner Societies
    • …
    corecore