23 research outputs found

    An epitaxial perovskite as a compact neuristor:Electrical self-oscillations in TbMnO<sub>3</sub>thin films

    Get PDF
    Developing materials that can lead to compact versions of artificial neurons (neuristors) and synapses (memristors) is the main aspiration of the nascent neuromorphic materials research field. Oscillating circuits are interesting as neuristors, as they emulate the firing of action potentials. Here we present room-temperature self-oscillating devices fabricated from epitaxial thin films of semiconducting TbMnO3. We show that the negative differential resistance regime observed in these devices, orginates from transitions across the electronic band gap of the semiconductor. The intrinsic nature of the mechanism governing the oscillations gives rise to a high degree of control and repeatability. Obtaining such properties in an epitaxial perovskite oxide opens the way towards combining self-oscillating properties with those of other piezoelectric, ferroelectric, or magnetic perovskite oxides in order to achieve hybrid neuristor-memristor functionality in compact heterostructures

    Structural modulation in potassium birnessite single crystals

    Get PDF
    We report on the growth of single-crystal potassium birnessite (K0.31MnO2*0.41H2O) and present both the average and local structural characterization of this frustrated magnetic system. Single crystals were obtained employing a flux growth method with a KNO3/B2O3 flux at 700 {\deg}C. Single-crystal X-ray diffraction revealed an average orthorhombic symmetry, with space group Cmcm. A combination of high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with atomic resolution energy dispersive X-ray spectroscopy (EDS) demonstrated the layered structure of potassium birnessite with manganese-containing planes well separated by layers of potassium atoms. MnO6 octahedra and the K/H2O planes were clearly imaged via integrated differential phase contrast (iDPC) STEM. Furthermore, iDPC-STEM also revealed the existence of local domains with alternating contrast of the manganese oxide planes, most likely originating from charge ordering of Mn3+ and Mn4+ along the c-axis. These charge-ordered domains are clearly correlated with a reduction in the c-lattice parameter compared to the rest of the matrix. The insight gained from this work allows for a better understanding of the correlation between structure and magnetic properties.Comment: A high-resolution version with supplementary information can be found at https://pubs.rsc.org/en/content/articlelanding/2021/TC/D0TC05396A#!divAbstrac

    Investigating the Electromechanical Behavior of Unconventionally Ferroelectric Hf0.5Zr0.5O2-Based Capacitors Through Operando Nanobeam X-Ray Diffraction

    Get PDF
    Understanding various aspects of ferroelectricity in hafnia-based nanomaterials is of vital importance for the development of future nonvolatile memory and logic devices. Here, the unconventional and weak electromechanical response of epitaxial La0.67Sr0.33MnO3/Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 ferroelectric capacitors is investigated, via the sensitivity offered by nanobeam X-ray diffraction experiments during application of electrical bias. It is shown that the pristine rhombohedral phase exhibits a linear piezoelectric effect with piezoelectric coefficient (|d33|) ≈ 0.5–0.8 pmV−1. It is found that the piezoelectric response is suppressed above the coercive voltage. For higher voltages, and with the onset of DC conductivity throughout the capacitor, a second-order effect is observed. The work sheds light into the electromechanical response of rhombohedral Hf0.5Zr0.5O2 and suggests its (un)correlation with ferroelectric switching

    A fast algorithm for calculating an expected outbreak size on dynamic contagion networks

    Get PDF
    Calculation of expected outbreak size of a simple contagion on a known contact network is a common and important epidemiological task, and is typically carried out by computationally intensive simulation. We describe an efficient exact method to calculate the expected outbreak size of a contagion on an outbreak-invariant network that is a directed and acyclic, allowing us to model all dynamically changing networks when contagion can only travel forward in time. We describe our algorithm and its use in pseudocode, as well as showing examples of its use on disease relevant, data-derived networks

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    CSD 2041937: Experimental Crystal Structure Determination

    No full text
    Related Article: Liliia D. Kulish, Pavan Nukala, Rick Scholtens, A. G. Mike Uiterwijk, Ruben Hamming-Green, Graeme R. Blake|2021|J.Mater.Chem.C|9|1370|doi:10.1039/D0TC05396

    Phylogenetic analyses of Lapita decoration do not support branching evolution or regional population structure during colonization of Remote Oceania

    No full text
    Intricately decorated Lapita pottery (3100–2700 BP) was made and deposited by the prehistoric colonizers of Pacific islands, east of the main Solomon's chain. For decades, analyses of this pottery have focused on the ancestor–descendant relationships of populations and the relative degree of interaction across the region to explain similarities in Lapita decoration. Cladistic analyses, increasingly used to examine the evolutionary relationships of material culture assemblages, have not been conducted on Lapita artefacts. Here, we present the first cladistic analysis of Lapita pottery and note the difficulties in using cladistics to investigate datasets where a high degree of horizontal transmission and non-branching evolution may explain observed variation. We additionally present NeighborNet and phenetic distance network analyses to generate hypotheses that may account for Lapita decorative similarity
    corecore