45 research outputs found

    Gamma interferon induces different keratinocyte cellular patterns of expression of HLA-DR and DQ and intercellular adhesion molecule-I (ICAM-I) antigens

    Full text link
    With indirect immunofluorescence techniques we demonstrated that recombinant gamma-interferon induced the expression of the class II antigens HLA-DR and HLA-DQ as well as intercellular adhesion molecule-1 (ICAM-1) on normal, cultured human keratinocytes grown in low-calcium, serum-free medium. Each antigen displayed a distinctive cellular staining pattern. HLA-DR was strongly localized to perinuclear zones with intense cell surface expression; HLA-DQ displayed a perinuclear accentuation, but with minimal cell surface staining, and ICAM-1 was strongly expressed in a diffuse cytoplasmic pattern with intense cell surface expression. Keratinocytes grown in medium supplemented with 10% fetal calf serum underwent differentiation, with a diminished expression of all three antigens as compared to those grown in low-calcium, serum-free medium. These results confirm that gamma interferon can differentially regulate HLA-DR nd HLA-DQ expression; that there are probably different biochemical metabolic pathways by which these three molecules are expressed on keratinocytes, and that the expression is also a function of the degree of keratinocyte differentiation. The strong cell surface expression of ICAM-1 is suggested to be of major importance as the recognition molecule, by which T cells bind to gamma interferon exposed keratinocytes, and suggests and integral role for this molecule in epidermal lymphocyte trafficking.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74686/1/j.1365-2133.1989.tb07759.x.pd

    Chemically-Induced Cancers Do Not Originate from Bone Marrow-Derived Cells

    Get PDF
    BACKGROUND: The identification and characterization of cancer stem cells (CSCs) is imperative to understanding the mechanism of cancer pathogenesis. Growing evidence suggests that CSCs play critical roles in the development and progression of cancer. However, controversy exists as to whether CSCs arise from bone marrow-derived cells (BMDCs). METHODOLOGY AND PRINCIPAL FINDINGS: In the present study, n-nitrosodiethylamine (DEN) was used to induce tumor formation in female mice that received bone marrow from male mice. Tumor formation was induced in 20/26 mice, including 12 liver tumors, 6 lung tumors, 1 bladder tumor and 1 nasopharyngeal tumor. Through comparison of fluorescence in situ hybridization (FISH) results in corresponding areas from serial tumor sections stained with HandE, we determined that BMDCs were recruited to both tumor tissue and normal surrounding tissue at a very low frequency (0.2-1% in tumors and 0-0.3% in normal tissues). However, approximately 3-70% of cells in the tissues surrounding the tumor were BMDCs, and the percentage of BMDCs was highly associated with the inflammatory status of the tissue. In the present study, no evidence was found to support the existence of fusion cells formed form BMDCs and tissue-specific stem cells. CONCLUSIONS: In summary, our data suggest that although BMDCs may contribute to tumor progression, they are unlike to contribute to tumor initiation.published_or_final_versio

    The desmosome and pemphigus

    Get PDF
    Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required

    Experimental autoimmune encephalomyelitis in Mice Expressing the Autoantigen MBP1-10 Covalently bound to the MHC Class II Molecule I-Au

    No full text
    Most autoantigens implicated in multiple sclerosis (MS) are expressed not only in the central nervous system (CNS) but also in the thymus and the periphery. Nevertheless, these autoantigens might induce a strong autoimmune response leading to severe destruction within the CNS. To investigate the influence of a dominantly presented autoantigen on experimental autoimmune encephalomyelitis (EAE), we generated transgenic mice expressing the autoantigenic peptide MBP1-10 covalently bound to the MHC class II molecule I-A(u). These mice were crossed either with B10.PL or with TCR-transgenic Tg4 mice, specific for the transgenic peptide-MHC combination. In double transgenic mice we found strong thymic deletion and residual peripheral T cells were refractory to antigen stimulation in vitro. Residual peripheral CD4(+) T cells expressed activation markers and a high proportion was CD25 positive. Transfer of both CD25-negative and CD25-positive CD4(+) T cells from double transgenic animals into B10.PL mice strongly inhibited the progression of EAE. Despite this thorough tolerance induction, some double transgenic mice developed severe signs of EAE after an extended period of time. Our data show that in the circumstances where autoantigenic priming persists, and where the number of antigen-specific T cells is high enough, autoimmunity may prevail over very potent tolerance-inducing mechanisms

    Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation.

    No full text
    FoxP3(+) confers suppressive properties and is confined to regulatory T cells (T(reg)) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4(+) T(reg) are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8(+) population of FoxP3(+) T(reg) that convert from CD8(+) conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8(+) T(reg) undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-β. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4(+)FoxP3(+) population and is more potent in exerting class I-restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8(+)FoxP3(+) T(reg) are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8(+)FoxP3(+) T(reg) thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I-restricted T-cell responses after bone marrow transplantation
    corecore