783 research outputs found

    Ferromagnetic resonance force microscopy on a thin permalloy film

    Full text link
    Ferromagnetic Resonance Force Microscopy (FMRFM) offers a means of performing local ferromagnetic resonance. We have studied the evolution of the FMRFM force spectra in a continuous 50 nm thick permalloy film as a function of probe-film distance and performed numerical simulations of the intensity of the FMRFM probe-film interaction force, accounting for the presence of the localized strongly nonuniform magnetic field of the FMRFM probe magnet. Excellent agreement between the experimental data and the simulation results provides insight into the mechanism of FMR mode excitation in an FMRFM experiment.Comment: 9 pages, 2 figure

    Limits on Phase Separation for Two-Dimensional Strongly Correlated Electrons

    Full text link
    From calculations of the high temperature series for the free energy of the two-dimensional t-J model we construct series for ratios of the free energy per hole. The ratios can be extrapolated very accurately to low temperatures and used to investigate phase separation. Our results confirm that phase separation occurs only for J/t greater than 1.2. Also, the phase transition into the phase separated state has Tc of approximately 0.25J for large J/t.Comment: 4 pages, 6 figure

    Spin Lifetime in Small Electron Spin Ensembles Measured by Magnetic Resonance Force Microscopy

    Get PDF
    Magnetic Resonance Force Microscopy can enable nanoscale imaging of spin lifetime. We report temperature dependent measurements of the spin correlation time τm\tau_m of the statistical fluctuations of the spin polarization---the spin noise---of ensembles containing 100\sim 100 electron spins by this technique. Magneto-mechanical relaxation due to spin-cantilever coupling was controlled and spurious mechanisms that can affect the spin correlation time of the microscopic signal were characterized. These measurements have ramifications for optimizing spin sensitivity, understanding local spin dynamics and for nanoscale imaging.Comment: 5 pages, 5 figures, accepted in Phys. Rev. B (Rapid Comm.

    Phase Separation of the Two-Dimensional t-J model

    Full text link
    The boundary of phase separation of the two-dimensional t-J model is investigated by the power-Lanczos method and Maxwell construction. The method is similar to a variational approach and it determines the lower bound of the phase separation boundary with Jc/t=0.6±0.1J_c/t=0.6\pm 0.1 in the limit ne1n_e\sim 1. In the physical interesting regime of high T_c superconductors where 0.3<J/t<0.50.3<J/t<0.5 there is no phase separation.Comment: LaTex 5 pages, 4 figure

    Force-detected nuclear magnetic resonance: Recent advances and future challenges

    Get PDF
    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity -- and perhaps -- to 3D microscopy of molecules with atomic resolution.Comment: 15 pages & 11 figure

    On the Liaison Between Superconductivity and Phase Separation

    Full text link
    Models of strongly correlated electrons that tend to phase separate are studied including a long-range 1/r repulsive interaction. It is observed that charge-density-wave states become stable as the strength of the 1/r term, Vcoul{\rm V_{coul}}, is increased. Due to this effect, the domain of stability of the superconducting phases that appear near phase separation at Vcoul=0{\rm V_{coul} = 0} is not enlarged by a 1/r interaction as naively expected. Nevertheless, superconductivity exists in a wide region of parameter space, even if phase separation is suppressed. Our results have implications for some theories of the cuprates.Comment: 11 pages, 9 postscript figures are appende

    Hole Localization in Underdoped Superconducting Cuprates Near 1/8th Doping

    Full text link
    Measurements of thermal conductivity versus temperature over a broad range of doping in YBa2_2Cu3_3O6+x_{6+x} and HgBa2_2Can1_{n-1}Cun_nO2n+2+δ_{2n+2+\delta} (nn=1,2,3) suggest that small domains of localized holes develop for hole concentrations near pp=1/8. The data imply a mechanism for localization that is intrinsic to the CuO2_2-planes and is enhanced via pinning associated with oxygen-vacancy clusters.Comment: 4 pages, 4 eps fig.'s, to be published, Phys. Rev.

    On the Spectrum of Field Quadratures for a Finite Number of Photons

    Full text link
    The spectrum and eigenstates of any field quadrature operator restricted to a finite number NN of photons are studied, in terms of the Hermite polynomials. By (naturally) defining \textit{approximate} eigenstates, which represent highly localized wavefunctions with up to NN photons, one can arrive at an appropriate notion of limit for the spectrum of the quadrature as NN goes to infinity, in the sense that the limit coincides with the spectrum of the infinite-dimensional quadrature operator. In particular, this notion allows the spectra of truncated phase operators to tend to the complete unit circle, as one would expect. A regular structure for the zeros of the Christoffel-Darboux kernel is also shown.Comment: 16 pages, 11 figure
    corecore