1,412 research outputs found

    Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    Full text link
    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m Keck telescope, from July 2009. These data have a spatial resolution of 0.035"/pixel and spectral resolution of R~3800 in the H and K broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark- that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ~4 bar in these near-infrared dark regions. Using a set of high signal-to-noise spectra in a cloud-free band from 2-12N, we find that Neptune's cloud opacity is dominated by a compact, optically thick cloud layer with a base near 3 bar and composed of low albedo, forward scattering particles, with an assumed characteristic size of ~1μ\mum. Above this cloud, we require a vertically extended haze of smaller (~0.1 μ\mum) particles, which reaches from the upper troposphere (~0.6 bar) into the stratosphere. The particles in this haze are brighter and more isotropically scattering than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20N to 87S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4_4) profile, and find that our retrievals indicate a strong preference for a low methane relative humidity at pressures where methane is expected to condense. Our preferred solution at most locations is for a methane relative humidity below 10% near the tropopause in addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a trend of lower CH4_4 columns above 2.5 bar at mid- and high-southern latitudes over low latitudes.Comment: Published in Icarus: 15 September 201

    Localized ferromagnetic resonance force microscopy in permalloy-cobalt films

    Full text link
    We report Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a justaposed continuous films of permalloy and cobalt. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode near the edge of the film agrees quantitatively with experimental data. Our experiments demonstrate the micron scale lateral resolution in determining local magnetic properties in continuous ferromagnetic samples.Comment: 7 pages, 3 figure

    Mid-Infrared Ethane Emission on Neptune and Uranus

    Full text link
    We report 8- to 13-micron spectral observations of Neptune and Uranus from the NASA Infrared Telescope Facility spanning more than a decade. The spectroscopic data indicate a steady increase in Neptune's mean atmospheric 12-micron ethane emission from 1985 to 2003, followed by a slight decrease in 2004. The simplest explanation for the intensity variation is an increase in stratospheric effective temperature from 155 +/- 3 K in 1985 to 176 +/- 3 K in 2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 +/- 3 K in 2004. We also detected variation of the overall spectral structure of the ethane band, specifically an apparent absorption structure in the central portion of the band; this structure arises from coarse spectral sampling coupled with a non-uniform response function within the detector elements. We also report a probable direct detection of ethane emission on Uranus. The deduced peak mole fraction is approximately an order of magnitude higher than previous upper limits for Uranus. The model fit suggests an effective temperature of 114 +/- 3 K for the globally-averaged stratosphere of Uranus, which is consistent with recent measurements indicative of seasonal variation.Comment: Accepted for publication in ApJ. 16 pages, 10 figures, 2 table

    Observation of Pure Spin Transport in a Diamond Spin Wire

    Full text link
    Spin transport electronics - spintronics - focuses on utilizing electron spin as a state variable for quantum and classical information processing and storage. Some insulating materials, such as diamond, offer defect centers whose associated spins are well-isolated from their environment giving them long coherence times; however, spin interactions are important for transport, entanglement, and read-out. Here, we report direct measurement of pure spin transport - free of any charge motion - within a nanoscale quasi 1D 'spin wire', and find a spin diffusion length ~ 700 nm. We exploit the statistical fluctuations of a small number of spins (N\sqrt{N} < 100 net spins) which are in thermal equilibrium and have no imposed polarization gradient. The spin transport proceeds by means of magnetic dipole interactions that induce flip-flop transitions, a mechanism that can enable highly efficient, even reversible, pure spin currents. To further study the dynamics within the spin wire, we implement a magnetic resonance protocol that improves spatial resolution and provides nanoscale spectroscopic information which confirms the observed spin transport. This spectroscopic tool opens a potential route for spatially encoding spin information in long-lived nuclear spin states. Our measurements probe intrinsic spin dynamics at the nanometre scale, providing detailed insight needed for practical devices which seek to control spin.Comment: 7 pages, 2 figures, under consideration at Nature Nanotechnolog

    Mid-Infrared Spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 2. Determination of the Mean Composition of the Upper Troposphere and Stratosphere

    Full text link
    Mid-infrared spectral observations Uranus acquired with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope are used to determine the abundances of C2H2, C2H6, CH3C2H, C4H2, CO2, and tentatively CH3 on Uranus at the time of the 2007 equinox. For vertically uniform eddy diffusion coefficients in the range 2200-2600 cm2 s-1, photochemical models that reproduce the observed methane emission also predict C2H6 profiles that compare well with emission in the 11.6-12.5 micron wavelength region, where the nu9 band of C2H6 is prominent. Our nominal model with a uniform eddy diffusion coefficient Kzz = 2430 cm2 sec-1 and a CH4 tropopause mole fraction of 1.6x10-5 provides a good fit to other hydrocarbon emission features, such as those of C2H2 and C4H2, but the model profile for CH3C2H must be scaled by a factor of 0.43, suggesting that improvements are needed in the chemical reaction mechanism for C3Hx species. The nominal model is consistent with a CH3D/CH4 ratio of 3.0+-0.2x10-4. From the best-fit scaling of these photochemical-model profiles, we derive column abundances above the 10-mbar level of 4.5+01.1/-0.8 x 10+19 molecule-cm-2 for CH4, 6.2 +- 1.0 x 10+16 molecule-cm-2 for C2H2 (with a value 24% higher from a different longitudinal sampling), 3.1 +- 0.3 x 10+16 molecule-cm-2 for C2H6, 8.6 +- 2.6 x 10+13 molecule-cm-2 for CH3C2H, 1.8 +- 0.3 x 10+13 molecule-cm-2 for C4H2, and 1.7 +- 0.4 x 10+13 molecule-cm-2 for CO2 on Uranus. Our results have implications with respect to the influx rate of exogenic oxygen species and the production rate of stratospheric hazes on Uranus, as well as the C4H2 vapor pressure over C4H2 ice at low temperatures
    • …
    corecore