2,090 research outputs found

    Comparing key compositional indicators in Jupiter with those in extra-solar giant planets

    Get PDF
    Spectroscopic transiting observations of the atmospheres of hot Jupiters around other stars, first with Hubble Space Telescope and then Spitzer, opened the door to compositional studies of exoplanets. The James Webb Space Telescope will provide such a profound improvement in signal-to-noise ratio that it will enable detailed analysis of molecular abundances, including but not limited to determining abundances of all the major carbon- and oxygen-bearing species in hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen ratio, an essential number for planet formation models and a motivating goal of the Juno mission currently around JupiterComment: Submitted to the Astro2020 Decadal Survey as a white paper; thematic areas "Planetary Systems" and "Star and Planet Formation

    Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy

    Get PDF
    Lateral one-dimensional imaging of cobalt (Co) films by means of microscopic ferromagnetic resonance (FMR) detected using the magnetic resonance force microscope (MRFM) is demonstrated. A novel approach involving scanning a localized magnetic probe is shown to enable FMR imaging in spite of the broad resonance linewidth. We introduce a spatially selective local field by means of a small, magnetically polarized spherical crystallite of yttrium iron garnet (YIG). Using MRFM-detected FMR signals from a sample consisting of two Co films, we can resolve the ∼20 μm lateral separation between the films. The results can be qualitatively understood by consideration of the calculated spatial profiles of the magnetic field generated by the YIG sphere

    Ferromagnetic resonance force microscopy on microscopic cobalt single layer films

    Get PDF
    We report mechanical detection of ferromagnetic resonance signals from microscopic Co single layer thin films using a magnetic resonance force microscope (MRFM). Variations in the magnetic anisotropy field and the inhomogeneity of were clearly observed in the FMR spectra of microscopic Co thin films 500 and 1000 angstrom thick and 40 X 200 micron^2 in lateral extent. This demonstrates the important potential that MRFM detection of FMR holds for microscopic characterization of spatial distribution of magnetic properties in magnetic layered materials and devices.Comment: 4 pages, 2 figures, RevTex. To be published in Applied Physics Letters, October 5, 199

    An optical method for carbon dioxide isotopes and mole fractions in small gas samples: Tracing microbial respiration from soil, litter, and lignin

    Get PDF
    Rationale Carbon dioxide isotope (δ13C value) measurements enable quantification of the sources of soil microbial respiration, thus informing ecosystem C dynamics. Tunable diode lasers (TDLs) can precisely measure CO2 isotopes at low cost and high throughput, but are seldom used for small samples (≤5 mL). We developed a TDL method for CO2 mole fraction ([CO2]) and δ13C analysis of soil microcosms. Methods Peaks in infrared absorbance following constant volume sample injection to a carrier were used to independently measure [12CO2] and [13CO2] for subsequent calculation of δ13C values. Using parallel soil incubations receiving differing C substrates, we partitioned respiration from three sources using mixing models: native soil organic matter (SOM), added litter, and synthetic lignin containing a 13C label at Cβ of the propyl side chain. Results Once-daily TDL calibration enabled accurate quantification of δ13C values and [CO2] compared with isotope ratio mass spectrometry (IRMS), with long-term external precision of 0.17 and 0.31‰ for 5 and 1 mL samples, respectively, and linear response between 400 and 5000 μmol mol−1CO2. Production of CO2 from native soil C, added litter, and lignin Cβ varied over four orders of magnitude. Multiple-pool first-order decay models fitted to data (R2 \u3e 0.98) indicated substantially slower turnover for lignin Cβ (17 years) than for the dominant pool of litter (1.3 years) and primed soil C (3.9 years). Conclusions Our TDL method provides a flexible, precise, and high-throughput (60 samples h−1) alternative to IRMS for small samples. This enables the use of C isotopes in increasingly sophisticated experiments to test biogeochemical controversies, such as the fate of lignins in soil

    On the Liaison Between Superconductivity and Phase Separation

    Full text link
    Models of strongly correlated electrons that tend to phase separate are studied including a long-range 1/r repulsive interaction. It is observed that charge-density-wave states become stable as the strength of the 1/r term, Vcoul{\rm V_{coul}}, is increased. Due to this effect, the domain of stability of the superconducting phases that appear near phase separation at Vcoul=0{\rm V_{coul} = 0} is not enlarged by a 1/r interaction as naively expected. Nevertheless, superconductivity exists in a wide region of parameter space, even if phase separation is suppressed. Our results have implications for some theories of the cuprates.Comment: 11 pages, 9 postscript figures are appende
    • …
    corecore