344 research outputs found
Advanced Conducting Project
Contents include: American Hymnsong Suite by Dwayne S. Milburn Bacchanale from the Opera Samson et Dalila by Camille Saint-Saëns ; arranged by Andrew Balent The Great Locomotive Chase by Robert W. Smith Infernal Dance and Finale from the Ballet \u27The Firebird\u27 by Igor Stravinsky ; arranged by Andrew Balent In Heaven\u27s Air by Samuel R. Hazo Third Suite by Robert Jager
Exploring the Relationship Between Physical Activity and Symptom Severity in Adolescents with Autism Spectrum Disorder
While the beneficial effects of exercise on physical and mental well-being, as well as the symptoms of Autism Spectrum Disorder (ASD), are well known, there is a gap in literature on the effect of physical activity (PA) on the psycho-social symptoms of ASD. The purpose of this study is to examine the relationship between physical activity and symptom severity in adolescents with ASD. Participants who have children with ASD between the ages of 6 and 18 were solicited through the Vermont Family Network. The measures we used in this study were the Autism Spectrum Rating Scale (ASRS), the CPAQ (Children’s Physical Activity Questionnaire), and a demographics form that had an additional segment asking parents to rank various PA barriers their children might encounter. A simple correlational analyses was run between the ASRS and CPAQ results. Three families participated in the study. Family members reported their children encountering both physical and social barriers to PA; of the barriers reported, difficulty with team sport interaction, an inability to self-monitor, and limited motor functioning were reported to be most inhibitory to the child’s participation in PA. Subjects were reported to average about 4 hours of leisure-time PA per week, with only 20 minutes of sport-related activity. Strong associations were seen between number of minutes spent in leisure-time PA and both the severity and treatment scales of the ASRS; individuals who were rated with an above average presence of ASD symptoms (i.e. Social/Communication, Unusual Behaviors, Self-Regulation) were also reported to partake in a low volume of PA. While this was a small pilot study, the findings do indicate general inverse associations between time spent in leisure-time PA and both the severity and treatment scales of the ASRS. If these trends were seen on a larger scale, implications could lead to prescribing PA as a means of complimenting traditional management of ASD. Future studies should examine larger, more heterogeneous samples to establish significance within these trends
Differential regulation of anti-inflammatory genes by p38 MAP kinase and MAP kinase kinase 6.
BackgroundConventional p38α inhibitors have limited efficacy in rheumatoid arthritis, possibly because p38 blockade suppresses the counter-regulatory mechanisms that limit inflammation. In contrast, targeting the upstream MAP kinase kinases, MKK3 and MKK6, partially maintains p38-mediated anti-inflammatory responses in bone marrow-derived macrophages (BMDM). In this study, we explored the mechanisms that preserve anti-inflammatory gene expression by evaluating differential regulation of IL-10 and p38-dependent anti-inflammatory genes in MKK3-/-, MKK6-/-, and p38 inhibitor-treated wildtype cells.MethodsBMDM from wild type (WT), MKK3-/-, and MKK6-/- mice were pre-treated with p38 inhibitor SB203580 (SB), JNK inhibitor SP600125 (SP), and/or ERK inhibitor PD98059 (PD) and stimulated with LPS. Supernatant protein levels were measured by multiplex bead immunoassay. mRNA expression was determined by qPCR and protein expression by Western blot analysis. De novo IL-10 mRNA synthesis was quantified in cells treated with ethynyl-uridine and LPS followed by reverse transcription and qPCR. mRNA half-life was measured in LPS-treated cells that were then incubated with actinomycin D ± SB203580.ResultsPre-treatment of WT BMDM with p38 inhibitor significantly reduced IL-10 production in the three groups, while ERK and JNK inhibitors had minimal effects. IL-10 production was significantly decreased in MKK3-/- BMDM compared with either WT or MKK6-/- cells. IL-10 mRNA expression was modestly reduced in MKK3-/- BMDM but was preserved in MKK6-/- cells compared with WT. De novo IL-10 mRNA synthesis was inhibited in MKK3-/- and p38 inhibitor pre-treated cells, but not MKK6-/- cells compared with WT. IL-10 mRNA half-life was markedly reduced in p38 inhibitor-treated WT cells while MKK-deficiency had minimal effect. DUSP1 mRNA levels were preserved in MKK-deficient cells but not in p38 inhibitor-treated WT cells. Tristetraprolin mRNA and protein levels were reduced in p38 inhibitor-treated WT cells compared with MKK6-/- cells.ConclusionUnlike p38-inhibition, the absence of MKK6 mostly preserves IL-10 and TTP protein expression in BMDM. MKK6-deficiency also spares DUSP1 and IL-1RA, which are key negative regulators of the inflammatory response. Together, these data suggest that MKK6 is a potential therapeutic target in RA
Regulation of the JNK pathway by TGF-beta activated kinase 1 in rheumatoid arthritis synoviocytes.
c-Jun N-terminal kinase (JNK) contributes to metalloproteinase (MMP) gene expression and joint destruction in inflammatory arthritis. It is phosphorylated by at least two upstream kinases, the mitogen-activated protein kinase kinases (MEK) MKK4 and MKK7, which are, in turn, phosphorylated by MEK kinases (MEKKs). However, the MEKKs that are most relevant to JNK activation in synoviocytes have not been determined. These studies were designed to assess the hierarchy of upstream MEKKs, MEKK1, MEKK2, MEKK3, and transforming growth factor-beta activated kinase (TAK)1, in rheumatoid arthritis (RA). Using either small interfering RNA (siRNA) knockdown or knockout fibroblast-like synoviocytes (FLSs), MEKK1, MEKK2, or MEKK3 deficiency (either alone or in combination) had no effect on IL-1beta-stimulated phospho-JNK (P-JNK) induction or MMP expression. However, TAK1 deficiency significantly decreased P-JNK, P-MKK4 and P-MKK7 induction compared with scrambled control. TAK1 knockdown did not affect p38 activation. Kinase assays showed that TAK1 siRNA significantly suppressed JNK kinase function. In addition, MKK4 and MKK7 kinase activity were significantly decreased in TAK1 deficient FLSs. Electrophoretic mobility shift assays demonstrated a significant decrease in IL-1beta induced AP-1 activation due to TAK1 knockdown. Quantitative PCR showed that TAK1 deficiency significantly decreased IL-1beta-induced MMP3 gene expression and IL-6 protein expression. These results show that TAK1 is a critical pathway for IL-1beta-induced activation of JNK and JNK-regulated gene expression in FLSs. In contrast to other cell lineages, MEKK1, MEKK2, and MEKK3 did not contribute to JNK phosphorylation in FLSs. The data identify TAK1 as a pivotal upstream kinase and potential therapeutic target to modulate synoviocyte activation in RA
Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.
BackgroundSomatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP) kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Methods and findingsSelective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT) catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3) gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha) in the nervous system because IT etanercept (a TNF inhibitor) given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.ConclusionsThese data suggest that peripheral inflammation is sensed by the central nervous system (CNS), which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses
PARENCHYMAL CELLS FROM ADULT RAT LIVER IN NONPROLIFERATING MONOLAYER CULTURE : I. Functional Studies
Parenchymal cells from adult rat liver have been established in primary monolayer culture. Donor animals are subjected to a partial hepatectomy and, 4 days later, cells are prepared by collagenase perfusion of the regenerated liver. The hepatic parenchymal cells, separated from nonparenchymal material and suspended in serum-free medium, are placed in plastic tissue culture dishes, where they form a monolayer within 24 h. The monolayer cells exhibit minimal mitotic activity and demonstrate several major metabolic functions characteristic of liver in vivo; these include albumin synthesis and secretion, gluconeogenesis from 3-carbon precursors, responsiveness to insulin and glucagon, glycogen synthesis, and activity of two microsomal enzymes. These functions are present in the monolayer cells for several days at activities similar to those observed in the liver in vivo. The findings indicate that hepatic parenchymal cells in this monolayer system are viable and behave in many respects like normal adult rat liver
Evaluating the association between diabetes, cognitive decline and dementia
The aim of this article is to review the association between diabetes mellitus, cognitive decline and dementia, including the effects of cognitive decline and dementia on self management of diabetes. This is a literature review of primary research articles. A number of contemporary research articles that met the inclusion criteria were selected for this review paper. These articles were selected using a number of search strategies and electronic databases, such as EBSCOhost Research and SwetsWise databases. The duration of diabetes, glycated haemoglobin levels and glycaemic fluctuations were associated with cognitive decline and dementia. Similarly, hypoglycaemia was significantly related to increased risk of developing cognitive decline and dementia. Furthermore, cognitive decline and dementia were associated with poorer diabetes management. There is evidence of the association between diabetes, cognitive decline and dementia including the shared pathogenesis between diabetes and Alzheimer’s disease. In addition, the self management of diabetes is affected by dementia and cognitive decline. It could be suggested that the association between diabetes and dementia is bidirectional with the potential to proceed to a vicious cycle. Further studies are needed in order to fully establish the relationship between diabetes, cognitive decline and dementia. Patients who have diabetes and dementia could benefit from structured education strategies, which should involve empowerment programmes and lifestyle changes. The detection of cognitive decline should highlight the need for education strategies
PUMA-mediated apoptosis in fibroblast-like synoviocytes does not require p53
PUMA (p53-upregulated modulator of apoptosis) is a pro-apoptotic gene that can induce rapid cell death through a p53-dependent mechanism. However, the efficacy of PUMA gene therapy to induce synovial apoptosis in rheumatoid arthritis might have limited efficacy if p53 expression or function is deficient. To evaluate this issue, studies were performed to determine whether p53 is required for PUMA-mediated apoptosis in fibroblast-like synoviocytes (FLS). p53 protein was depleted or inhibited in human FLS by using p53 siRNA or a dominant-negative p53 protein. Wild-type and p53(-/- )murine FLS were also examined to evaluate whether p53 is required. p53-deficient or control FLS were transfected with PUMA cDNA or empty vector. p53 and p21 expression were then determined by Western blot analysis. Apoptosis was assayed by ELISA to measure histone release and caspase-3 activation, or by trypan blue dye exclusion to measure cell viability. Initial studies showed that p53 siRNA decreased p53 expression by more than 98% in human FLS. Loss of p53 increased the growth rate of cells and suppressed p21 expression. However, PUMA still induced apoptosis in control and p53-deficient FLS after PUMA cDNA transfection. Similar results were observed in p53(-/- )murine FLS or in human FLS transfected with a dominant-negative mutant p53 gene. These data suggest that PUMA-induced apoptosis in FLS does not require p53. Therefore, approaches to gene therapy that involve increasing PUMA expression could be an effective inducer of synoviocyte cell death in rheumatoid arthritis regardless of the p53 status in the synovium
Dental Students’ Perceived Value of Peer‐Mentoring Clinical Leadership Experiences
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153637/1/jddj002203372016803tb06086x.pd
- …