795 research outputs found

    Studies on the Weak Itinerant Ferromagnet SrRuO3 under High Pressure to 34 GPa

    Full text link
    The dependence of the Curie temperature Tc on nearly hydrostatic pressure has been determined to 17.2 GPa for the weak itinerant ferromagnetic SrRuO3 in both polycrystalline and single-crystalline form. Tc is found to decrease under pressure from 162 K to 42.7 K at 17.2 GPa in nearly linear fashion at the rate dTc/dP = -6.8 K/GPa. No superconductivity was found above 4 K in the pressure range 17 to 34 GPa. Room-temperature X-ray diffraction studies to 25.3 GPa reveal no structural phase transition but indicate that the average Ru-O-Ru bond angle passes through a minimum near 15 GPa. The bulk modulus and its pressure derivative were determined to be B =192(3) GPa and B' = 5.0(3), respectively. Parallel ac susceptibility studies on polycrystalline CaRuO3 at 6 and 8 GPa pressure found no evidence for either ferromagnetism or superconductivity above 4 K

    Alternative route to charge density wave formation in multiband systems

    Full text link
    Charge and spin density waves, periodic modulations of the electron and magnetization densities, respectively, are among the most abundant and non-trivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems such as the iron based superconductors

    Factors Influencing Graduate Program Choice Among Undergraduate Women

    Get PDF
    Context: Despite equal enrollment proportions in MD and PhD programs, there are fewer women than men in MD-PhD programs and academic medicine. Factors important in degree program selection, including the perception of gender disparities, among undergraduate students were characterized. Methods: In 2017, pre-health students at four public North Carolina universities were invited to participate in an online survey regarding career plans, decision factors, and perceptions of gender disparities in MD, PhD and MD-PhD pathways. The authors characterized factors important to program selection, and evaluated the association of intended graduate program with perceived gender disparities using Fisher’s exact tests. Results: Among the n=186 female survey participants, most were white (54%) and intended MD, PhD, and/or MD-PhD programs (52%). Sixty percent had heard of MD-PhD programs, over half had no research experience, and half were considering but uncertain about pursuing a research career. The most common factors influencing degree program choice were perceived competitiveness as an applicant, desired future work environment, and desire for patient interaction. Twenty-five percent of students considering MD, PhD, and MD-PhD programs stated that perceived gender disparities during training for those degrees will influence their choice of program, however intended degree was not statistically associated with perceived gender disparities. Discussion: Perceived gender disparities may influence choice of graduate training program but are not among the top factors. Perceived competitiveness as an applicant is an important career consideration among undergraduate women. Strategies to increase awareness of MD-PhD programs, to encourage women to consider all training paths for which they are qualified are needed. Keywords: Education, Graduate; Sexism; Career Choice; Biomedical Research/education; Female What is known: Though men and women are nearly equally represented in MD-only and PhD-only programs, women are underrepresented in MD-PhD programs, which train physician-scientists. Prior studies have shown gender is not associated with rates of attrition from MD-PhD programs or differences in academic preparation, research interest, or research experience, suggesting enrollment differences by gender may be due to fewer women applying to MD-PhD programs. Gender parity in the physician-scientist workforce is critical to equitably serving a diverse patient population. What this study adds: This study is the first to examine the role of gender disparities in the career choices of undergraduate women. Given the moderate familiarity with MD-PhD training and lack of research experience among respondents, increased awareness of MD-PhD programs and expanded research opportunities may help undergraduates make informed career choices. This may increase women MD-PhD applicants, creating a more balanced physician-scientist workforce to address the needs of patients from all backgrounds

    A Twisted Ladder: relating the Fe superconductors to the high TcT_c cuprates

    Full text link
    We construct a 2-leg ladder model of an Fe-pnictide superconductor and discuss its properties and relationship with the familiar 2-leg cuprate model. Our results suggest that the underlying pairing mechanism for the Fe-pnictide superconductors is similar to that for the cuprates.Comment: 5 pages, 4 figure

    Electronic correlations in the iron pnictides

    Full text link
    In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.Comment: 10 page

    Probable causes of increasing brucellosis in free-ranging elk of the Greater Yellowstone Ecosystem

    Get PDF
    While many wildlife species are threatened, some populations have recovered from previous Overexploitation, and data linking these population increases with disease dynamics are limited. We present data suggesting that free-ranging elk (Cervus elaphus) are a maintenance host for Brucella abortus in new areas of the Greater Yellowstone Ecosystem (GYE). Brucellosis seroprevalence in free-ranging elk increased from 0-7% in 1991-1992 to 8 20% in 2006-2007 in four of six herd units around the GYE. These levels of brucellosis are comparable to some herd units where elk are artificially aggregated on supplemental feeding grounds. There are several possible mechanisms for this increase that we evaluated using statistical and population modeling approaches. Simulations of an age-structured population model suggest that the observed levels of seroprevalence are unlikely to be sustained by dispersal from supplemental feeding areas with relatively high seroprevalence or an older age structure. Increases in brucellosis seroprevalence and the total elk population size in areas with feeding grounds have not been statistically detectable. Meanwhile, the rate of seroprevalence increase outside the feeding grounds was related to the population size and density of each herd unit. Therefore, the data suggest that enhanced elk-to-elk transmission in free-ranging populations may be occurring due to larger winter elk aggregations. Elk populations inside and outside of the GYE that traditionally did not maintain brucellosis may now be at risk due to recent population increases. In particular, some neighboring populations of Montana elk were 5-9 times larger in 2007 than in the 1970s, with some aggregations comparable to the Wyoming feeding-ground populations. Addressing the unintended consequences of these increasing populations is complicated by limited hunter access to private lands, which places many ungulate populations out of administrative control. Agency-landowner hunting access partnerships and the protection of large predators are two management strategies that may be used to target high ungulate densities in private refuges and reduce the current and future burden of disease

    High pressure transport properties of the topological insulator Bi2Se3

    Full text link
    We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 towards increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s−1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte
    • …
    corecore