81 research outputs found

    Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats

    Get PDF
    Our study provides novel findings of experimental hypokalemia reducing urea cycle functionality and thereby severely increasing plasma ammonia. This is pathophysiologically interesting because plasma ammonia increases during hypokalemia by a hitherto unknown mechanism, which may be particular important in relation to the unexplained link between hypokalemia and hepatic encephalopathy. Potassium deficiency decreases gene expression, protein synthesis, and growth. The urea cycle maintains body nitrogen homeostasis including removal of toxic ammonia. Hyperammonemia is an obligatory trait of liver failure, increasing the risk for hepatic encephalopathy, and hypokalemia is reported to increase ammonia. We aimed to clarify the effects of experimental hypokalemia on the in vivo capacity of the urea cycle, on the genes of the enzymes involved, and on ammonia concentrations. Female Wistar rats were fed a potassium-free diet for 13 days. Half of the rats were then potassium repleted. Both groups were compared with pair- and free-fed controls. The following were measured: in vivo capacity of urea-nitrogen synthesis (CUNS); gene expression (mRNA) of urea cycle enzymes; plasma potassium, sodium, and ammonia; intracellular potassium, sodium, and magnesium in liver, kidney, and muscle tissues; and liver sodium/potassium pumps. Liver histology was assessed. The diet induced hypokalemia of 1.9 ± 0.4 mmol/L. Compared with pair-fed controls, the in vivo CUNS was reduced by 34% (P < 0.01), gene expression of argininosuccinate synthetase 1 (ASS1) was decreased by 33% (P < 0.05), and plasma ammonia concentrations were eightfold elevated (P < 0.001). Kidney and muscle tissue potassium contents were markedly decreased but unchanged in liver tissue. Protein expressions of liver sodium/potassium pumps were unchanged. Repletion of potassium reverted all the changes. Hypokalemia decreased the capacity for urea synthesis via gene effects. The intervention led to marked hyperammonemia, quantitatively explainable by the compromised urea cycle. Our findings motivate clinical studies of patients with liver disease

    XIAP-mediated Caspase Inhibition in Hodgkin's Lymphoma–derived B Cells

    Get PDF
    The malignant Hodgkin and Reed-Sternberg cells of Hodgkin's lymphoma (HL) and HL-derived B cell lines were previously shown to be resistant to different apoptotic stimuli. We show here that cytochrome c fails to stimulate caspases-9 and -3 activation in cytosolic extracts of HL-derived B cells, which is due to high level expression of X-linked inhibitor of apoptosis (XIAP). Coimmunoprecipitation studies revealed that XIAP, apoptosis protease-activating factor–1, and caspase-3 are complexed in HL-derived B cell lysates. Even after stimulation with exogenous cytochrome c and dATP, XIAP impairs the proteolytic processing and activation of caspase-3. In cytosolic extracts, inhibition of XIAP by the second mitochondria-derived activator of caspases (Smac)/DIABLO, or immunodepletion of XIAP restores cytochrome c–triggered processing and activation of caspase-3. Smac or a Smac-derived agonistic peptide also sensitized intact HL-derived B cells for the apoptotic action of staurosporine. Finally, Hodgkin and Reed-Sternberg cells of primary tumor HL tissues also constitutively and abundantly express XIAP. The results of this paper suggest that high level XIAP expression is a hallmark of HL, which may play a crucial role in resistance to apoptosis

    Urea cycle dysregulation in non-alcoholic fatty liver disease

    Get PDF
    Background: In non-alcoholic steatohepatitis (NASH), function of urea cycle enzymes (UCEs) may be affected and result in hyperammonemia with risk of disease progression. We aimed to determine whether expression and function of UCEs are altered in a NASH animal model and in non-alcoholic fatty liver disease (NAFLD) patients and whether this is reversible. / Methods: Rats were fed a high-fat, high-cholesterol diet for 10 months to induce NASH and then changed to normal chow to recover. In humans, we obtained liver biopsies from 20 patients with steatosis and 15 NASH patients. Primary rat hepatocytes were isolated and cultured with free fatty acids. We measured the gene and protein expression, the activity of ornithine transcarbamylase (OTC) and ammonia concentrations. Moreover, we assessed the promoter methylation status of OTC and carbamoyl phosphate synthetase (CPS1) in rats, humans and in steatotic hepatocytes. / Results: In NASH animals, gene and protein expression of OTC and CPS1 and activity of OTC were reversibly reduced and hypermethylation of OTC promotor genes was observed. Also in NAFLD patients, OTC enzyme concentration and activity were reduced and ammonia concentrations were increased and more so in NASH. Furthermore, OTC and CPS1 promoter regions were hypermethylated. In primary hepatocytes induction of steatosis was associated with OTC promoter hypermethylation, reduction in the gene expression of OTC and CPS1 and an increase in ammonia concentration in the supernatant. / Conclusion: NASH is associated with a reduction in gene and protein expression, and activity of UCEs resulting in hyperammonemia, possibly through hypermethylation of UCE genes and impairment of urea synthesis. Our investigations describe for the first time a link between NASH, function of UCEs and hyperammonemia providing a novel therapeutic target. / Lay summary: In patients with fatty liver disease, the enzymes that convert nitrogen waste into urea may be affected leading to the accumulation of the toxic substance, ammonia. This accumulation of ammonia can lead to development of scar tissue and risk of progression of disease. In this study, we show that fat accumulation in the liver produces a reversible reduction in the function of these enzymes that are involved in detoxification of ammonia. These data provide potential new targets for therapy of fatty liver disease

    Analytical variables influencing the performance of a miRNA based laboratory assay for prediction of relapse in stage I non-small cell lung cancer (NSCLC)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laboratory assays are needed for early stage non-small lung cancer (NSCLC) that can link molecular and clinical heterogeneity to predict relapse after surgical resection. We technically validated two miRNA assays for prediction of relapse in NSCLC. Total RNA from seventy-five formalin-fixed and paraffin-embedded (FFPE) specimens was extracted, labeled and hybridized to Affymetrix miRNA arrays using different RNA input amounts, ATP-mix dilutions, array lots and RNA extraction- and labeling methods in a total of 166 hybridizations. Two combinations of RNA extraction- and labeling methods (assays I and II) were applied to a cohort of 68 early stage NSCLC patients.</p> <p>Results</p> <p>RNA input amount and RNA extraction- and labeling methods affected signal intensity and the number of detected probes and probe sets, and caused large variation, whereas different ATP-mix dilutions and array lots did not. Leave-one-out accuracies for prediction of relapse were 63% and 73% for the two assays. Prognosticator calls ("no recurrence" or "recurrence") were consistent, independent on RNA amount, ATP-mix dilution, array lots and RNA extraction method. The calls were not robust to changes in labeling method.</p> <p>Conclusions</p> <p>In this study, we demonstrate that some analytical conditions such as RNA extraction- and labeling methods are important for the variation in assay performance whereas others are not. Thus, careful optimization that address all analytical steps and variables can improve the accuracy of prediction and facilitate the introduction of microRNA arrays in the clinic for prediction of relapse in stage I non-small cell lung cancer (NSCLC).</p

    Microsatellite instability, Epstein–Barr virus, mutation of type II transforming growth factor β receptor and BAX in gastric carcinomas in Hong Kong Chinese

    Get PDF
    Microsatellite instability (MI), the phenotypic manifestation of mismatch repair failure, is found in a proportion of gastric carcinomas. Little is known of the links between MI and Epstein–Barr virus (EBV) status and clinicopathological elements. Examination of genes mutated through the MI mechanism could also be expected to reveal important information on the carcinogenic pathway. Seventy-nine gastric carcinomas (61 EBV negative, 18 EBV positive) from local Hong Kong Chinese population, an intermediate-incidence area, were examined. Eight microsatellite loci, inclusive of the A10 tract of type II transforming growth factor β receptor (TβR-II), were used to evaluate the MI status. MI in the BAX and insulin-like growth factor II receptor (IGF-IIR) genes were also examined. High-level MI (>40% unstable loci) was detected in ten cases (12.7%) and low-level MI (1–40% unstable loci) in three (3.8%). High-level MI was detected in two EBV-associated cases (11%) and the incidence was similar for the EBV-negative cases (13%). The high-level MIs were significantly associated with intestinal-type tumours (P = 0.03) and a more prominent lymphoid infiltrate (P = 0.04). Similar associations were noted in the EBV-positive carcinomas. The high-level MIs were more commonly located in the antrum, whereas the EBV-associated carcinomas were mostly located in body. Thirteen cardia cases were negative for both high-level MI and EBV. All patients aged below 55 were MI negative (P = 0.049). Of the high-level MIs, 80% had mutation in TβR-II, 40% in BAX and 0% in IGF-IIR. Of low-level MIs, 33% also had TβR-II mutation. These mutations were absent in the MI-negative cases. Of three lymphoepithelioma-like carcinomas, two cases were EBV positive and MI negative, one case was EBV negative but with high-level MI. In conclusion, high-level MIs were present regardless of the EBV status, and were found in a particular clinicopathological subset of gastric carcinoma patient. Inactivation of important growth regulatory genes observed in these carcinomas confirms the importance of MI in carcinogenesis. © 1999 Cancer Research Campaig

    Prognostic Model to Predict Post-Autologous Stem-Cell Transplantation Outcomes in Classical Hodgkin Lymphoma

    Get PDF
    Purpose: Our aim was to capture the biology of classical Hodgkin lymphoma (cHL) at the time of relapse and discover novel and robust biomarkers that predict outcomes after autologous stem-cell transplantation (ASCT). Materials and Methods: We performed digital gene expression profiling on a cohort of 245 formalin-fixed, paraffin-embedded tumor specimens from 174 patients with cHL, including 71 with biopsies taken at both primary diagnosis and relapse, to investigate temporal gene expression differences and associations with post-ASCT outcomes. Relapse biopsies from a training cohort of 65 patients were used to build a gene expression-based prognostic model of post-ASCT outcomes (RHL30), and two independent cohorts were used for validation. Results: Gene expression profiling revealed that 24% of patients exhibited poorly correlated expression patterns between their biopsies taken at initial diagnosis and relapse, indicating biologic divergence. Comparative analysis of the prognostic power of gene expression measurements in primary versus relapse specimens demonstrated that the biology captured at the time of relapse contained superior properties for post-ASCT outcome prediction. We developed RHL30, using relapse specimens, which identified a subset of high-risk patients with inferior post-ASCT outcomes in two independent external validation cohorts. The prognostic power of RHL30 was independent of reported clinical prognostic markers (both at initial diagnosis and at relapse) and microenvironmental components as assessed by immunohistochemistry. Conclusion: We have developed and validated a novel clinically applicable prognostic assay that at the time of first relapse identifies patients with unfavorable post-ASCT outcomes. Moving forward, it will be critical to evaluate the clinical use of RHL30 in the context of positron emission tomography-guided response assessment and the evolving cHL treatment landscape

    Tamoxifen's protection against breast cancer recurrence is not reduced by concurrent use of the SSRI citalopram

    Get PDF
    Tamoxifen remains an important adjuvant therapy to reduce the rate of breast cancer recurrence among patients with oestrogen-receptor-positive tumours. Cytochrome P-450 2D6 metabolises tamoxifen to metabolites that more readily bind the oestrogen receptor. This enzyme also metabolises selective serotonin reuptake inhibitors (SSRI), so these widely used drugs – when taken concurrently – may reduce tamoxifen's prevention of breast cancer recurrence. We studied citalopram use in 184 cases of breast cancer recurrence and 184 matched controls without recurrence after equivalent follow-up. Cases and controls were nested in a population of female residents of Northern Denmark with stages I–III oestrogen-receptor-positive breast cancer 1985–2001 and who took tamoxifen for 1, 2, or most often for 5 years. We ascertained prescription histories by linking participants' central personal registry numbers to prescription databases from the National Health Service. Seventeen cases (9%) and 21 controls (11%) received at least one prescription for the SSRI citalopram while taking tamoxifen (adjusted conditional odds ratio=0.85, 95% confidence interval=0.42, 1.7). We also observed no reduction of tamoxifen effectiveness among regular citalopram users (⩾30% overlap with tamoxifen use). These results suggest that concurrent use of citalopram does not reduce tamoxifen's prevention of breast cancer recurrence

    HMG CoA reductase inhibitors (statins) to treat Epstein–Barr virus-driven lymphoma

    Get PDF
    While statins have been highly effective for lowering serum cholesterol and reducing the incidence of coronary events, they have multiple other effects. Certain statins block the interaction of adhesion molecules that are important for cell–cell interactions including those between EBV-transformed B cells. These same statins inhibit NF-κB activation in the cells and induce apoptosis of transformed B cells. Studies in severe combined immunodeficiency mice show that simvastatin delays the development of EBV-lymphomas in these animals. These statins might be considered for the treatment of EBV-lymphomas in selected patients
    corecore