10,044 research outputs found

    The War against Hunger

    Get PDF

    Artificial molecular quantum rings: Spin density functional theory calculations

    Full text link
    The ground states of artificial molecules made of two vertically coupled quantum rings are studied within the spin density functional theory for systems containing up to 13 electrons. Quantum tunneling effects on the electronic structure of the coupled rings are analyzed. For small ring radius, our results recover those of coupled quantum dots. For intermediate and large ring radius, new phases are found showing the formation of new diatomic artificial ring molecules. Our results also show that the tunneling induced phase transitions in the coupled rings occur at much smaller tunneling energy as compared to those for coupled quantum dot systems.Comment: 10 pages, 6 figure

    On the evolution of mean motion resonances through stochastic forcing: Fast and slow libration modes and the origin of HD128311

    Full text link
    Aims. We clarify the response of extrasolar planetary systems in a 2:1 mean motion commensurability with masses ranging from the super Jovian range to the terrestrial range to stochastic forcing that could result from protoplanetary disk turbulence. The behaviour of the different libration modes for a wide range of system parameters and stochastic forcing magnitudes is investigated. The growth of libration amplitudes is parameterized as a function of the relevant physical parameters. The results are applied to provide an explanation of the configuration of the HD128311 system. Methods. We first develop an analytic model from first principles without making the assumption that both eccentricities are small. We also perform numerical N-body simulations with additional stochastic forcing terms to represent the effects of putative disk turbulence. Results. Systems are quickly destabilized by large magnitudes of stochastic forcing but some stability is imparted should systems undergo a net orbital migration. The slow mode, which mostly corresponds to motion of the angle between the apsidal lines of the two planets, is converted to circulation more readily than the fast mode which is associated with oscillations of the semi-major axes. This mode is also vulnerable to the attainment of small eccentricities which causes oscillations between periods of libration and circulation. Conclusions. Stochastic forcing due to disk turbulence may have played a role in shaping the configurations of observed systems in mean motion resonance. It naturally provides a mechanism for accounting for the HD128311 system.Comment: 15 pages, 8 figures, added discussion in h and k coordinates, recommended for publicatio

    Design, engineering and utility of biotic games

    Get PDF
    Games are a significant and defining part of human culture, and their utility beyond pure entertainment has been demonstrated with so-called ‘serious games’. Biotechnology – despite its recent advancements – has had no impact on gaming yet. Here we propose the concept of ‘biotic games’, i.e., games that operate on biological processes. Utilizing a variety of biological processes we designed and tested a collection of games: ‘Enlightenment’, ‘Ciliaball’, ‘PAC-mecium’, ‘Microbash’, ‘Biotic Pinball’, ‘POND PONG’, ‘PolymerRace’, and ‘The Prisoner's Smellemma’. We found that biotic games exhibit unique features compared to existing game modalities, such as utilizing biological noise, providing a real-life experience rather than virtual reality, and integrating the chemical senses into play. Analogous to video games, biotic games could have significant conceptual and cost-reducing effects on biotechnology and eventually healthcare; enable volunteers to participate in crowd-sourcing to support medical research; and educate society at large to support personal medical decisions and the public discourse on bio-related issues

    On the positive mass theorem for manifolds with corners

    Full text link
    We study the positive mass theorem for certain non-smooth metrics following P. Miao's work. Our approach is to smooth the metric using the Ricci flow. As well as improving some previous results on the behaviour of the ADM mass under the Ricci flow, we extend the analysis of the zero mass case to higher dimensions.Comment: 21 pages, incorporated referee's comment

    Toward a descriptive model of solar particles in the heliosphere

    Get PDF
    During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made

    Hypercomplex quantum mechanics

    Full text link
    The fundamental axioms of the quantum theory do not explicitly identify the algebraic structure of the linear space for which orthogonal subspaces correspond to the propositions (equivalence classes of physical questions). The projective geometry of the weakly modular orthocomplemented lattice of propositions may be imbedded in a complex Hilbert space; this is the structure which has traditionally been used. This paper reviews some work which has been devoted to generalizing the target space of this imbedding to Hilbert modules of a more general type. In particular, detailed discussion is given of the simplest generalization of the complex Hilbert space, that of the quaternion Hilbert module.Comment: Plain Tex, 11 page

    Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses

    Get PDF
    Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices

    The Genetic Age: Who Owns the Genome?: A Symposium on Intellectual Property and the Human Genome, 2 J. Marshall Rev. Intell. Prop. L. 6 (2002)

    Get PDF
    A Symposium on Intellectual Property Co-Sponsored by The Woodrow Wilson Center. Featuring the remarks of Scott A. Brown, J.D.; Q. Todd Dickinson, J.D.; Stephen P.A. Fodor, Ph.D.; Justin Gillis; Hon. Lee H. Hamilton; Eric S. Lander, Ph.D.; and Pilar Ossorio, Ph.D., J.D
    • 

    corecore